Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563629

RESUMO

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

2.
F S Sci ; 5(1): 80-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043603

RESUMO

OBJECTIVES: To assess the effect of simvastatin on uterine leiomyoma growth and extracellular matrix (ECM) deposition. DESIGN: Laboratory analysis of human leiomyoma cell culture, xenograft in a mouse model, and patient tissue from a clinical trial. SETTING: Academic research center. PATIENT(S): Tissue culture from human leiomyoma tissue and surgical leiomyoma tissue sections from a placebo-controlled randomized clinical trial. INTERVENTION(S): Simvastatin treatment. MAIN OUTCOME MEASURE(S): Serum concentrations, xenograft volumes, and protein expression. RESULTS: Mice xenografted with 3-dimensional human leiomyoma cultures were divided as follows: 7 untreated controls; 12 treated with activated simvastatin at 10 mg/kg body weight; and 15 at 20 mg/kg body weight. Simvastatin was detected in the serum of mice injected at the highest dose. Xenograft volumes were significantly smaller (mean 53% smaller at the highest concentration). There was dissolution of compact ECM, decreased ECM formation, and lower collagen protein expression in xenografts. Membrane type 1 matrix metalloproteinase was increased in vitro and in vivo. Matrix metalloproteinase 2 and low-density lipoprotein receptor-related protein 1 were increased in vitro. CONCLUSIONS: Simvastatin exhibited antitumoral activity with ECM degradation and decreased leiomyoma tumor volume in vivo. Activation of the matrix metalloproteinase 2, membrane type 1 matrix metalloproteinase, and low-density lipoprotein receptor-related protein 1 pathway may explain these findings.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Sinvastatina/uso terapêutico , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/farmacologia , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Leiomioma/tratamento farmacológico , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Peso Corporal , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/uso terapêutico
3.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37870142

RESUMO

Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.


Assuntos
Nitrilas , Água , Espectrofotometria Infravermelho/métodos , Domínio Catalítico , Anisotropia , Água/química
4.
J Phys Chem A ; 127(42): 8911-8921, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819373

RESUMO

The high transition dipole strength of the azide asymmetric stretch makes aryl azides good candidates as vibrational probes (VPs). However, aryl azides have complex absorption profiles due to Fermi resonances (FRs). Understanding the origin and the vibrational modes involved in FRs of aryl azides is critically important toward developing them as VPs for studies of protein structures and structural changes in response to their surroundings. As such, we studied vibrational couplings in 4-azidotoluene and 4-azido-N-phenylmaleimide in two solvents, N,N-dimethylacetamide and tetrahydrofuran, to explore the origin and the effects of intramolecular group and solvent on the FRs of aryl azides using density functional theory (DFT) calculations with the B3LYP functional and seven basis sets, 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), and 6-311++G(df,pd). Two combination bands consisting of the azide symmetric stretch and another mode form strong FRs with the azide asymmetric stretch for both molecules. The FR profile was altered by replacing the methyl group with maleimide. Solvents change the relative peak position and intensity more significantly for 4-azido-N-phenylmaleimide, which makes it a more sensitive VP. Furthermore, the DFT results indicate that a comparison among the results from different basis sets can be used as a means to predict more reliable vibrational spectra.

5.
Neuron ; 111(21): 3378-3396.e9, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657442

RESUMO

A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.


Assuntos
Dopamina , Proteômica , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Encéfalo/metabolismo , Dopamina/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/genética
6.
bioRxiv ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37546982

RESUMO

Background & Aims: Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods: We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results: TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion: TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.

7.
J Biol Chem ; 299(5): 104700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059184

RESUMO

Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , RNA , Ribonucleoproteínas , Edição de Genes , Filogenia , Ribonucleoproteínas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Dobramento de Proteína
8.
F S Sci ; 4(1): 74-89, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273722

RESUMO

OBJECTIVE: To determine whether a curcumin-supplemented diet would prevent and/or treat uterine leiomyoma growth in our mouse xenograft model. DESIGN: Animal study. SETTING: Laboratory study. PATIENT(S): N/A. INTERVENTION(S): Curcumin-supplemented diet. MAIN OUTCOME MEASURE(S): Dietary intake, blood concentrations, tumor size, extracellular matrix protein concentrations, apoptosis markers. RESULT(S): We found that curcumin was well tolerated as a dietary supplement, free curcumin and its metabolites were detected in the serum, and exposure resulted in approximately 60% less leiomyoma xenograft growth as well as dissolution of the peripheral extracellular matrix architecture of the xenografts. The production of matrix proteins, including collagens, decreased, whereas the number of apoptotic cells in the xenografts increased. Additionally, when xenografts were placed in a uterine intramural location, we found a significantly increased apoptotic response to curcumin in the diet. CONCLUSION(S): Mice on a diet supplemented with curcumin could achieve serum concentrations sufficient to regulate human leiomyoma xenograft growth, and curcumin could play both preventive and curative roles in the treatment of uterine leiomyoma as an oral nutritional supplement.


Assuntos
Curcumina , Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Animais , Camundongos , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Xenoenxertos , Solubilidade , Leiomioma/tratamento farmacológico , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
9.
Sci Adv ; 8(28): eabn4188, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857504

RESUMO

Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.

10.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617485

RESUMO

Chronic liver injury causes fibrosis, characterized by the formation of scar tissue resulting from excessive accumulation of extracellular matrix (ECM) proteins. Hepatic stellate cell (HSC) myofibroblasts are the primary cell type responsible for liver fibrosis, yet there are currently no therapies directed at inhibiting the activity of HSC myofibroblasts. To search for potential anti-fibrotic compounds, we performed a high-throughput compound screen in primary human HSC myofibroblasts and identified 19 small molecules that induce HSC inactivation, including the polyether ionophore nanchangmycin (NCMC). NCMC induces lipid re-accumulation while reducing collagen expression, deposition of collagen in the extracellular matrix, cell proliferation, and migration. We find that NCMC increases cytosolic Ca2+ and reduces the phosphorylated protein levels of FYN, PTK2 (FAK), MAPK1/3 (ERK2/1), HSPB1 (HSP27), and STAT5B. Further, depletion of each of these kinases suppress COL1A1 expression. These studies reveal a signaling network triggered by NCMC to inactivate HSC myofibroblasts and reduce expression of proteins that compose the fibrotic scar. Identification of the antifibrotic effects of NCMC and the elucidation of pathways by which NCMC inhibits fibrosis provide new tools and therapeutic targets that could potentially be utilized to combat the development and progression of liver fibrosis.


Assuntos
Cicatriz , Células Estreladas do Fígado , Cicatriz/patologia , Colágeno/metabolismo , Éteres , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Quinase 1 de Adesão Focal/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Compostos de Espiro
11.
ACS Pharmacol Transl Sci ; 5(3): 156-168, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35311021

RESUMO

T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.

12.
Aging Brain ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36589695

RESUMO

With the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-ß-(Aß) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the APP gene into rhesus oocytes, followed by in vitro fertilization and embryo transfer. The APP-transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations (APPSWE/IND) regulated by the human polyubiquitin-C promoter. Overexpression of APP was confirmed in lymphocytes and brain tissue. Upon sacrifice at 10 years of age, one of the monkeys had developed Aß plaques and cerebral Aß-amyloid angiopathy in the occipital, parietal, and caudal temporal neocortices. The induction of Aß deposition more than a decade prior to its usual emergence in the rhesus monkey supports the feasibility of creating a transgenic nonhuman primate model for mechanistic analyses and preclinical testing of treatments for Alzheimer's disease and cerebrovascular amyloidosis.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120596, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801392

RESUMO

Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K+-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.


Assuntos
Quadruplex G , Sequência de Bases , Dicroísmo Circular , DNA/genética , Guanina , Conformação de Ácido Nucleico
14.
bioRxiv ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34845451

RESUMO

Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC 50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.

15.
Protein Sci ; 30(5): 1072-1080, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33641228

RESUMO

Mitochondrial outer membrane permeabilization, which is a critical step in apoptosis, is initiated upon transmembrane insertion of the C-terminal α-helix (α9) of the proapoptotic Bcl-2 family protein BAX. The isolated α9 fragment (residues 173-192) is also competent to disrupt model membranes, and the structures of its membrane-associated oligomers are of interest in understanding the potential roles of this sequence in apoptosis. Here, we used ultrafast two-dimensional infrared (2D IR) spectroscopy, thioflavin T binding, and transmission electron microscopy to show that the synthetic BAX α9 peptide (α9p) forms amyloid aggregates in aqueous environments and on the surfaces of anionic small unilamellar vesicles. Its inherent amyloidogenicity was predicted by sequence analysis, and 2D IR spectra reveal that vesicles modulate the ß-sheet structures of insoluble aggregates, motivating further examination of the formation or suppression of BAX amyloids in apoptosis.


Assuntos
Amiloide/química , Multimerização Proteica , Proteína X Associada a bcl-2/química , Humanos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
16.
Nat Cell Biol ; 22(10): 1211-1222, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895492

RESUMO

Cooperation between DNA, RNA and protein regulates gene expression and controls differentiation through interactions that connect regions of nucleic acids and protein domains and through the assembly of biomolecular condensates. Here, we report that endoderm differentiation is regulated by the interaction between the long non-coding RNA (lncRNA) DIGIT and the bromodomain and extraterminal domain protein BRD3. BRD3 forms phase-separated condensates of which the formation is promoted by DIGIT, occupies enhancers of endoderm transcription factors and is required for endoderm differentiation. BRD3 binds to histone H3 acetylated at lysine 18 (H3K18ac) in vitro and co-occupies the genome with H3K18ac. DIGIT is also enriched in regions of H3K18ac, and the depletion of DIGIT results in decreased recruitment of BRD3 to these regions. Our findings show that cooperation between DIGIT and BRD3 at regions of H3K18ac regulates the transcription factors that drive endoderm differentiation and suggest that protein-lncRNA phase-separated condensates have a broader role as regulators of transcription.


Assuntos
Diferenciação Celular , Endoderma/citologia , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Transição de Fase , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Acetilação , Endoderma/metabolismo , Genoma Humano , Histonas/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética
17.
Chembiochem ; 21(19): 2792-2804, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32372560

RESUMO

Infrared spectroscopy detects the formation of G-quadruplexes in guanine-rich nucleic acid sequences through shifts in the guanine C=O stretch mode. Here, we use ultrafast 2D infrared (IR) spectroscopy and isotope substitution to show that these shifts arise from vibrational delocalization among stacked G-quartets. This provides a direct measure of the sizes of locally ordered motifs in heterogeneous samples with substantial disordered regions. We find that parallel-stranded, potassium-bound DNA G-quadruplexes are limited to five consecutive G-quartets and 3-4 consecutive layers are preferred for longer polyguanine tracts. The resulting potassium-dependent G-quadruplex assembly landscape reflects the polyguanine tract lengths found in genomes, the ionic conditions prevalent in healthy mammalian cells, and the onset of structural disorder in disease states. Our study describes spectral markers that can be used to probe other G-quadruplex structures and provides insight into the fundamental limits of their formation in biological and artificial systems.


Assuntos
DNA/química , DNA/síntese química , Quadruplex G , Humanos , Conformação de Ácido Nucleico , Tamanho da Partícula , Espectrofotometria Infravermelho
18.
Nat Chem Biol ; 16(3): 226-227, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080631
19.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796631

RESUMO

Highly selective, positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M1 receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M1 receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M1 receptor signaling in native systems, and it is not clear whether biased M1 PAMs display differences in modulating M1-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M1-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M1 PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M1-dependent LTD in the PFC. In contrast, biased and nonbiased M1 PAMs acted similarly in potentiating M1-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M1 PAMs to modulate certain central nervous system (CNS) functions and that biased M1 PAMs function differently in brain regions implicated in cognition.


Assuntos
Córtex Cerebral/enzimologia , Plasticidade Neuronal , Fosfolipase D/genética , Fosfolipase D/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Sítio Alostérico , Animais , Células CHO , Cálcio/química , Cognição , Cricetinae , Cricetulus , Eletrofisiologia , Feminino , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/enzimologia , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
20.
Trends Pharmacol Sci ; 40(12): 1006-1020, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31711626

RESUMO

Muscarinic acetylcholine receptors (mAChR) play important roles in regulating complex behaviors such as cognition, movement, and reward, making them ideally situated as potential drug targets for the treatment of several brain disorders. Recent advances in the discovery of subtype-selective allosteric modulators for mAChRs has provided an unprecedented opportunity for highly specific modulation of signaling by individual mAChR subtypes in the brain. Recently, mAChR allosteric modulators have entered clinical development for Alzheimer's disease (AD) and schizophrenia, and have potential utility for other brain disorders. However, mAChR allosteric modulators can display a diverse array of pharmacological properties, and a more nuanced understanding of the mAChR will be necessary to best translate preclinical findings into successful clinical treatments.


Assuntos
Transtornos Mentais/tratamento farmacológico , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores Muscarínicos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Humanos , Transtornos Mentais/metabolismo , Terapia de Alvo Molecular , Agonistas Muscarínicos/uso terapêutico , Antagonistas Muscarínicos/uso terapêutico , Doenças do Sistema Nervoso/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...