Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301215, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678536

RESUMO

Tailoring a material's surface with hierarchical structures from the micro- to the nanoscale is key for fabricating highly sensitive detection platforms. To achieve this, the fabrication method should be simple, inexpensive, and yield materials with a high density of surface features. Here, using benchtop fabrication techniques, gold surfaces with hierarchically structured roughness are generated for sensing applications. Hierarchical gold electrodes are prepared on pre-stressed polystyrene substrates via electroless deposition and amperometric pulsing. Electrodes fabricated using 1 mm H[AuCl4] and roughened with 80 pulses revealed the highest electroactive surface area. These electrodes are used for enzyme-free detection of glucose in the presence of bovine serum albumin and achieved a limit of detection of 0.36 mm, below glucose concentrations in human blood. The surfaces nanoroughened with 100 pulses also showed excellent surface-enhanced Raman scattering (SERS) response for the detection of rhodamine 6G, with an enhancement factor of ≈2 × 106 compared to detection in solution, and for the detection of a self-assembled monolayer of thiophenol, with an enhancement factor of ≈30 compared to the response from microstructured gold surfaces. It is envisioned that the simplicity and low fabrication cost of these gold-roughened structures will expedite the development of electrochemical and SERS sensing devices.

2.
Chemphyschem ; 25(4): e202400056, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38350712

RESUMO

The front cover artwork is provided by Prof. Jose Moran-Mirabal's group at McMaster University in Hamilton, Ontario, Canada. The image shows a 3D rendering and electron microscopy images of micro/nanostructured electrodes, fabricated through thermal shrinking of a shape memory polymer. Read the full text of the Review at 10.1002/cphc.202300535.

3.
Chemphyschem ; 25(4): e202300535, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060839

RESUMO

Since their discovery in the 1940s, shape memory polymers (SMPs) have been used in a broad spectrum of applications for research and industry.[1] SMPs can adopt a temporary shape and promptly return to their original form when submitted to an external stimulus. They have proven useful in fields such as wearable and stretchable electronics,[2] biomedicine,[3] and aerospace..[4] These materials are attractive and unique due to their ability to "remember" a shape after being submitted to elastic deformation. By combining the properties of SMPs with the advantages of electrochemistry, opportunities have emerged to develop structured sensing devices through simple and inexpensive fabrication approaches. The use of electrochemistry for signal transduction provides several advantages, including the translation into inexpensive sensing devices that are relatively easy to miniaturize, extremely low concentration requirements for detection, rapid sensing, and multiplexed detection. Thus, electrochemistry has been used in biosensing,[5] pollutant detection,[6] and pharmacological[7] applications, among others. To date, there is no review that summarizes the literature addressing the use of SMPs in the fabrication of structured electrodes for electrochemical sensing. This review aims to fill this gap by compiling the research that has been done on this topic over the last decade.

4.
ACS Appl Mater Interfaces ; 15(47): 54234-54248, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964517

RESUMO

Extrusion three-dimensional (3D) bioprinting is a promising technology with many applications in the biomedical and tissue engineering fields. One of the key limitations for the widespread use of this technology is the narrow window of printability that results from the need to have bioinks with rheological properties that allow the extrusion of continuous filaments while maintaining high cell viability within the materials during and after printing. In this work, we use Carbopol (CBP) as rheology modifier for extrusion printing of biomaterials that are typically nonextrudable or present low printability. We show that low concentrations of CBP can introduce the desired rheological properties for a wide range of formulations, allowing the use of polymers with different cross-linking mechanisms and the introduction of additives and cells. To explore the opportunities and limitations of CBP as a rheology modifier, we used ink formulations based on poly(ethylene glycol)diacrylate with extrusion 3D printing to produce soft, yet stable, hydrogels with tunable mechanical properties. Cell-laden constructs made with such inks presented high viability for cells seeded on top of cross-linked materials and cells incorporated within the bioink during printing, showing that the materials are noncytotoxic and the printed structures do not degrade for up to 14 days. To our knowledge, this is the first report of the use of CBP-containing bioinks to 3D-print complex cell-laden structures that are stable for days and present high cell viability. The use of CBP to obtain highly printable inks can accelerate the evolution of extrusion 3D bioprinting by guaranteeing the required rheological properties and expanding the number of materials that can be successfully printed. This will allow researchers to develop and optimize new bioinks focusing on the biochemical, cellular, and mechanical requirements of the targeted applications rather than the rheology needed to achieve good printability.


Assuntos
Bioimpressão , Polímeros , Bioimpressão/métodos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Reologia , Hidrogéis/química , Tinta , Alicerces Teciduais/química
5.
ACS Appl Mater Interfaces ; 15(47): 55183-55192, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972391

RESUMO

Paper has emerged as an excellent alternative to create environmentally benign disposable electrochemical sensing devices. The critical step to fabricating electrochemical sensors is making paper conductive. In this work, paper-based electrodes with a high electroactive surface area (ESA) were fabricated using a simple electroless deposition technique. The polymerization time of a polydopamine adhesion layer and the gold salt concentration during the electroless deposition step were optimized to obtain uniformly conductive paper-based electrodes. The optimization of these fabrication parameters was key to obtaining the highest ESA possible. Roughening factors (Rf) of 7.2 and 2.3 were obtained when cyclic voltammetry was done in sulfuric acid and potassium ferricyanide, respectively, demonstrating a surface prone to fast electron transfer. As a proof of concept, mercury detection was done through anodic stripping, achieving a limit of quantification (LOQ) of 0.9 ppb. By changing the metal deposition conditions, the roughness of the metalized papers could also be tuned for their use as surface-enhanced Raman scattering (SERS) sensors. Metallized papers with the highest SERS signal for thiophenol detection yielded a LOQ of 10 ppb. We anticipate that this method of fabricating nanostructured paper-based electrodes can accelerate the development of simple, cost-effective, and highly sensitive electrochemical and SERS sensing platforms.

6.
Nanoscale ; 15(17): 7854-7869, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060148

RESUMO

Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Ácido Cítrico , Espectroscopia de Infravermelho com Transformada de Fourier , Citratos
7.
ACS Appl Bio Mater ; 6(3): 1161-1172, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36881860

RESUMO

The prevention of bacterial colonization and the stimulation of osseointegration are two major requirements for bone-interfacing materials to reduce the incidence of complications and promote the restoration of the patient's health. The present investigation developed an effective, two-step functionalization of 3D printed scaffolds intended for bone-interfacing applications using a simple polydopamine (PDA) dip-coating method followed by the formation of silver nanoparticles (AgNPs) after a second coating step in silver nitrate. 3D printed polymeric substrates coated with a ∼20 nm PDA layer and 70 nm diameter AgNPs proved effective in hindering Staphylococcus aureus biofilm formation, with a 3000-8000-fold reduction in the number of bacterial colonies formed. The implementation of porous geometries significantly accelerated osteoblast-like cell growth. Microscopy characterization further elucidated homogeneity, features, and penetration of the coating inside the scaffold. A proof-of-concept coating on titanium substrates attests to the transferability of the method to other materials, broadening the range of applications both in and outside the medical sector. The antibacterial efficiency of the coating is likely to lead to a decrease in the number of bacterial infections developed after surgery in the presence of these coatings on prosthetics, thus translating to a reduction in revision surgeries and improved health outcomes.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Prata , Impressão Tridimensional
8.
Angew Chem Int Ed Engl ; 62(19): e202218080, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912777

RESUMO

A key challenge for sensor miniaturization is to create electrodes with smaller footprints, while maintaining or increasing sensitivity. In this work, the electroactive surface of gold electrodes was enhanced 30-fold by wrinkling followed by chronoamperometric (CA) pulsing. Electron microscopy showed increased surface roughness in response to an increased number of CA pulses. The nanoroughened electrodes also showed excellent fouling resistance when submerged in solutions containing bovine serum albumin. The nanoroughened electrodes were used for electrochemical detection of Cu2+ in tap water and of glucose in human blood plasma. In the latter case, the nanoroughened electrodes allowed highly sensitive enzyme-free sensing of glucose, with responses comparable to those of two commercial enzyme-based sensors. We anticipate that this methodology to fabricate nanostructured electrodes can accelerate the development of simple, cost-effective, and high sensitivity electrochemical platforms.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Ouro , Técnicas Eletroquímicas/métodos , Glucose , Eletrodos , Técnicas Biossensoriais/métodos
9.
Biomacromolecules ; 24(1): 258-268, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36577132

RESUMO

Cellulose is a structural linear polysaccharide that is naturally produced by plants and bacteria, making it the most abundant biopolymer on Earth. The hierarchical structure of cellulose from the nano- to microscale is intimately linked to its biosynthesis and the ability to process this sustainable resource for materials applications. Despite this, the morphology of bacterial cellulose microfibrils and their assembly into higher order structures, as well as the structural origins of the alternating crystalline and disordered supramolecular structure of cellulose, have remained elusive. In this work, we employed high-resolution transmission electron and atomic force microscopies to study the morphology of bacterial cellulose ribbons at different levels of its structural hierarchy and provide direct visualization of nanometer-wide microfibrils. The non-persistent twisting of cellulose ribbons was characterized in detail, and we found that twists are associated with nanostructural defects at the bundle and microfibril levels. To investigate the structural origins of the persistent disordered regions that are present along cellulose ribbons, we employed a correlative super-resolution light and electron microscopy workflow and observed that the disordered regions that can be seen in super-resolution fluorescence microscopy largely correlated with the ribbon twisting observed in electron microscopy. Unraveling the hierarchical assembly of bacterial cellulose and the ultrastructural basis of its disordered regions provides insights into its biosynthesis and susceptibility to hydrolysis. These findings are important to understand the cell-directed assembly of cellulose, develop new cellulose-based nanomaterials, and develop more efficient biomass conversion strategies.


Assuntos
Celulose , Polissacarídeos , Celulose/química , Polissacarídeos/química , Microscopia de Força Atômica , Microscopia Eletrônica , Bactérias/química
11.
Biophys Rev (Melville) ; 4(2): 021302, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38510343

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.

12.
Front Bioeng Biotechnol ; 10: 959335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329705

RESUMO

Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.

13.
Biomacromolecules ; 23(5): 1981-1994, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35442640

RESUMO

The visualization of naturally derived cellulose nanofibrils (CNFs) and nanocrystals (CNCs) within nanocomposite materials is key to the development of packaging materials, tissue culture scaffolds, and emulsifying agents, among many other applications. In this work, we develop a versatile and efficient two-step approach based on triazine and azide-alkyne click-chemistry to fluorescently label nanocelluloses with a variety of commercially available dyes. We show that this method can be used to label bacterial cellulose fibrils, plant-derived CNFs, carboxymethylated CNFs, and CNCs with Cy5 and fluorescein derivatives to high degrees of labeling using minimal amounts of dye while preserving their native morphology and crystalline structure. The ability to tune the labeling density with this method allowed us to prepare optimized samples that were used to visualize nanostructural features of cellulose through super-resolution microscopy. The efficiency, cost-effectiveness, and versatility of this method make it ideal for labeling nanocelluloses and imaging them through advanced microscopy techniques for a broad range of applications.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Microscopia de Fluorescência , Nanopartículas/química , Alicerces Teciduais
14.
Micromachines (Basel) ; 13(2)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208459

RESUMO

Stretchable electronic devices must conform to curved surfaces and display highly reproducible and predictable performance over a range of mechanical deformations. Mechanical resilience in stretchable devices arises from the inherent robustness and stretchability of each component, as well as from good adhesive contact between functional and structural components. In this work, we combine bench-top thin film structuring with solvent assisted lift-off transfer to produce flexible and stretchable multi-material thin film devices. Patterned wrinkled thin films made of gold (Au), silicon dioxide (SiO2), or indium tin oxide (ITO) were produced through thermal shrinking of pre-stressed polystyrene (PS) substrates. The wrinkled films were then transferred from the PS to poly(dimethylsiloxane) (PDMS) substrates through covalent bonding and solvent-assisted dissolution of the PS. Using this approach, different materials and hybrid structures could be lifted off simultaneously from the PS, simplifying the fabrication of multi-material stretchable thin film devices. As proof-of-concept, we used this structuring and transfer method to fabricate flexible and stretchable thin film heaters. Their characterization at a variety of applied voltages and under cyclic tensile strain showed highly reproducible heating performance. We anticipate this fabrication method can aid in the development of flexible and stretchable electronic devices.

15.
Methods Mol Biol ; 2440: 289-303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218546

RESUMO

Raster image correlation spectroscopy (RICS) enables detecting and quantifying diffusion in live cells using standard commercial laser scanning confocal microscopes. Here, we describe a protocol based on RICS for measuring the lateral diffusion of two immunoreceptors within the plasma membrane of the macrophage cell line RAW 264.7. The sample images and measurements presented in this chapter were obtained from RICS analysis of Toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14), which are transmembrane and membrane-anchored receptors, respectively. A step-by-step guideline is provided to acquire raster-scanned images and to extract the diffusion coefficients using RICS analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Membrana Celular/metabolismo , Difusão , Microscopia Confocal/métodos , Análise Espectral/métodos
16.
Front Bioeng Biotechnol ; 9: 773511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900964

RESUMO

Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.

17.
ACS Appl Mater Interfaces ; 13(44): 52362-52373, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704743

RESUMO

Antifouling polymer coatings that are simple to manufacture are crucial for the performance of medical devices such as biosensors. "Grafting-to", a simple technique where presynthesized polymers are immobilized onto surfaces, is commonly employed but suffers from nonideal polymer packing leading to increased biofouling. Herein, we present a material prepared via the grafting-to method with improved antifouling surface properties and intrinsic localized surface plasmon resonance (LSPR) sensor capabilities. A new substrate shrinking fabrication method, Graft-then-Shrink, improved the antifouling properties of polymer-coated Au surfaces by altering graft-to polymer packing while simultaneously generating wrinkled Au structures for LSPR biosensing. Thiol-terminated, antifouling, hydrophilic polymers were grafted to Au-coated prestressed polystyrene (PS) followed by shrinking upon heating above the PS glass transition temperature. Interestingly, the polymer molecular weight and hydration influenced Au wrinkling patterns. Compared to Shrink-then-Graft controls, where polymers are immobilized post shrinking, Graft-then-Shrink increased the polymer content by 76% in defined footprints and improved the antifouling properties as demonstrated by 84 and 72% reduction in macrophage adhesion and protein adsorption, respectively. Wrinkled Au LSPR sensors had sensitivities of ∼200-1000 Δλ/ΔRIU, comparing favorably to commercial LSPR sensors, and detected biotin-avidin and desthiobiotin-avidin complexation in a concentration-dependent manner using a standard plate reader and a 96-well format.

18.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361006

RESUMO

The execution step in apoptosis is the permeabilization of the outer mitochondrial membrane, controlled by Bcl-2 family proteins. The physical interactions between the different proteins in this family and their relative abundance literally determine the fate of the cells. These interactions, however, are difficult to quantify, as they occur in a lipid membrane and involve proteins with multiple conformations and stoichiometries which can exist both in soluble and membrane. Here we focus on the interaction between two core Bcl-2 family members, the executor pore-forming protein Bax and the truncated form of the activator protein Bid (tBid), which we imaged at the single particle level in a mitochondria-like planar supported lipid bilayer. We inferred the conformation of the proteins from their mobility, and detected their transient interactions using a novel single particle cross-correlation analysis. We show that both tBid and Bax have at least two different conformations at the membrane, and that their affinity for one another increases by one order of magnitude (with a 2D-KD decreasing from ≃1.6µm-2 to ≃0.1µm-2) when they pass from their loosely membrane-associated to their transmembrane form. We conclude by proposing an updated molecular model for the activation of Bax by tBid.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Bicamadas Lipídicas/química , Proteína X Associada a bcl-2/química , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Proteína X Associada a bcl-2/metabolismo
19.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207111

RESUMO

Decellularization efforts must balance the preservation of the extracellular matrix (ECM) components while eliminating the nucleic acid and cellular components. Following effective removal of nucleic acid and cell components, decellularized ECM (dECM) can be solubilized in an acidic environment with the assistance of various enzymes to develop biological scaffolds in different forms, such as sheets, tubular constructs, or three-dimensional (3D) hydrogels. Each organ or tissue that undergoes decellularization requires a distinct and optimized protocol to ensure that nucleic acids are removed, and the ECM components are preserved. The objective of this study was to optimize the decellularization process for dECM isolation from human lung tissues for downstream 2D and 3D cell culture systems. Following protocol optimization and dECM isolation, we performed experiments with a wide range of dECM concentrations to form human lung dECM hydrogels that were physically stable and biologically responsive. The dECM based-hydrogels supported the growth and proliferation of primary human lung fibroblast cells in 3D cultures. The dECM is also amenable to the coating of polyester membranes in Transwell™ Inserts to improve the cell adhesion, proliferation, and barrier function of primary human bronchial epithelial cells in 2D. In conclusion, we present a robust protocol for human lung decellularization, generation of dECM substrate material, and creation of hydrogels that support primary lung cell viability in 2D and 3D culture systems.


Assuntos
Técnicas de Cultura de Células/métodos , Pulmão/citologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Humanos , Hidrogéis/administração & dosagem , Pulmão/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
20.
Biomacromolecules ; 22(7): 3060-3068, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34110127

RESUMO

Heating bleached kraft pulps treated with poly(ethylene-alt-maleic acid) (PEMAc) can lead to high yields of carboxylated polymer grafted to fibers. However, in many cases, the cured, dry pulp cannot be effectively repulped (redispersed in water) because the wet strength is too high. Impregnation with PEMAc solutions at pH 4 followed by high temperature (120-180 °C), catalyst-free curing for short times can give fixation yields >85% while maintaining repulpability. The combination of high fixation yields with low wet strength is possible because the extent of curing required for high grafting yields is less than the curing requirement for high wet strength. Two challenges in moving this technology to practicable applications are (1) identifying the optimum laboratory pulp curing conditions and (2) translating laboratory curing conditions to industrial processes. A modeling tool was developed to meet these challenges. The model is based on the observation that for curing conditions giving high fixation yields the wet tensile indices of grafted pulp sheets showed a power-law dependence on the ßΓ product where ß is the conversion of the succinic acid moieties in PEMAc to the corresponding succinic anhydride groups in the curing step and Γ is the amount of polymer applied to the pulp. For two PEMAc molecular weights and two pulp types, the power-law slopes were 0.6; however, the pre-exponential terms depended upon the specific polymer and pulp type combination. We propose that the relationships between the wet tensile index and ßΓ, from polymer-treated, laboratory pulp handsheets, can be used to predict if proposed curing conditions for larger-scale processes will produce a repulpable product.


Assuntos
Polietileno , Madeira , Etilenos , Maleatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...