Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(25): eabi8716, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749499

RESUMO

Natural lakes are thought to be globally important sources of greenhouse gases (CO2, CH4, and N2O) to the atmosphere although nearly no data have been previously reported from Africa. We collected CO2, CH4, and N2O data in 24 African lakes that accounted for 49% of total lacustrine surface area of the African continent and covered a wide range of morphology and productivity. The surface water concentrations of dissolved CO2 were much lower than values attributed in current literature to tropical lakes and lower than in boreal systems because of a higher productivity. In contrast, surface water-dissolved CH4 concentrations were generally higher than in boreal systems. The lowest CO2 and the highest CH4 concentrations were observed in the more shallow and productive lakes. Emissions of CO2 may likely have been substantially overestimated by a factor between 9 and 18 in African lakes and between 6 and 26 in pan-tropical lakes.

2.
FEMS Microbiol Ecol ; 97(10)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34468740

RESUMO

While the emissions of methane (CH4) by natural systems have been widely investigated, CH4 aquatic sinks are still poorly constrained. Here, we investigated the CH4 cycle and its interactions with nitrogen (N), iron (Fe) and manganese (Mn) cycles in the oxic-anoxic interface and deep anoxic waters of a small, meromictic and eutrophic lake, during two summertime sampling campaigns. Anaerobic CH4 oxidation (AOM) was measured from the temporal decrease of CH4 concentrations, with the addition of three potential electron acceptors (NO3-, iron oxides (Fe(OH)3) and manganese oxides (MnO2)). Experiments with the addition of either 15N-labeled nitrate (15N-NO3-) or 15N-NO3- combined with sulfide (H2S), to measure denitrification, chemolithotrophic denitrification and anaerobic ammonium oxidation (anammox) rates, were also performed. Measurements showed AOM rates up to 3.8 µmol CH4 L-1 d-1 that strongly increased with the addition of NO3- and moderately increased with the addition of Fe(OH)3. No stimulation was observed with MnO2 added. Potential denitrification and anammox rates up to 63 and 0.27 µmol N2 L-1 d-1, respectively, were measured when only 15N-NO3- was added. When H2S was added, both denitrification and anammox rates increased. Altogether, these results suggest that prokaryote communities in the redoxcline are able to efficiently use the most available substrates.


Assuntos
Metano , Nitratos , Anaerobiose , Desnitrificação , Lagos , Compostos de Manganês , Nitratos/análise , Óxidos
3.
FEMS Microbiol Ecol ; 97(9)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34338764

RESUMO

East African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components; however, protistan diversity is barely known. We investigated the community composition of small eukaryotes (<10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in 11 high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblages were associated with conductivity and productivity gradients, whereas depth had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (<90%) with reported sequences in public databases; these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.


Assuntos
Eucariotos , Estramenópilas , Biodiversidade , Ecossistema , Eucariotos/genética , Lagos , Filogenia , RNA Ribossômico 18S/genética , Estramenópilas/genética
4.
J Contam Hydrol ; 241: 103797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813144

RESUMO

Aquifers under agricultural areas are considered to be an indirect source of nitrous oxide emission (N2O) to the atmosphere, which is the greenhouse gas (GHGs) characterized with the highest global warning potential and acts as a stratospheric ozone depletion agent. Previous investigations performed in the Cretaceous Hesbaye chalk aquifer in Eastern Belgium suggested that the dynamics of N2O in the aquifer is controlled by overlapping biochemical processes such as nitrification and denitrification. The current study aims to obtain better insight concerning the factors controlling the distribution of N2O concentration along a vertical dimension in the aquifer, and to capture and quantify the occurrence of nitrification and denitrification processes in the groundwater system. Low-flow groundwater sampling technique was undertaken at different depths in the aquifer to collect groundwater samples aiming at obtaining information about ambient aquifer hydrogeochemical conditions and their effect on the accumulation of GHGs. Afterwards, laboratory stable isotope experiments, using NO3- and NH4+ compounds labeled with heavy 15N isotope, were applied to quantify the rates of nitrification and denitrification processes. Ambient studies suggest that the occurrence of N transformation was related to denitrification while laboratory incubation experiments did not detect it. Such controversial results might be explained by the discrepancy between real aquifer conditions and lab design studies. Thus, additional in situ tracer experiments should be carried out in areas where natural groundwater fluxes do not flush the injected tracer too rapidly. In addition, it would be useful to conduct microbiological studies to obtain better insight into the nature of subsurface biofilm biotope.


Assuntos
Água Subterrânea , Óxido Nitroso , Bélgica , Carbonato de Cálcio , Desnitrificação , Laboratórios , Nitrificação , Óxido Nitroso/análise
5.
Sci Rep ; 11(1): 1597, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452366

RESUMO

In the ferruginous and anoxic early Earth oceans, photoferrotrophy drove most of the biological production before the advent of oxygenic photosynthesis, but its association with ferric iron (Fe3+) dependent anaerobic methane (CH4) oxidation (AOM) has been poorly investigated. We studied AOM in Kabuno Bay, a modern analogue to the Archean Ocean (anoxic bottom waters and dissolved Fe concentrations > 600 µmol L-1). Aerobic and anaerobic CH4 oxidation rates up to 0.12 ± 0.03 and 51 ± 1 µmol L-1 d-1, respectively, were put in evidence. In the Fe oxidation-reduction zone, we observed high concentration of Bacteriochlorophyll e (biomarker of the anoxygenic photoautotrophs), which co-occurred with the maximum CH4 oxidation peaks, and a high abundance of Candidatus Methanoperedens, which can couple AOM to Fe3+ reduction. In addition, comparison of measured CH4 oxidation rates with electron acceptor fluxes suggest that AOM could mainly rely on Fe3+ produced by photoferrotrophs. Further experiments specifically targeted to investigate the interactions between photoferrotrophs and AOM would be of considerable interest. Indeed, ferric Fe3+-driven AOM has been poorly envisaged as a possible metabolic process in the Archean ocean, but this can potentially change the conceptualization and modelling of metabolic and geochemical processes controlling climate conditions in the Early Earth.

6.
Chemosphere ; 168: 756-764, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836279

RESUMO

We sampled the water column of the Dendre stone pit lake (Belgium) in spring, summer, autumn and winter. Depth profiles of several physico-chemical variables, nutrients, dissolved gases (CO2, CH4, N2O), sulfate, sulfide, iron and manganese concentrations and δ13C-CH4 were determined. We performed incubation experiments to quantify CH4 oxidation rates, with a focus on anaerobic CH4 oxidation (AOM), without and with an inhibitor of sulfate reduction (molybdate). The evolution of nitrate and sulfate concentrations during the incubations was monitored. The water column was anoxic below 20 m throughout the year, and was thermally stratified in summer and autumn. High partial pressure of CO2 and CH4 and high concentrations of ammonium and phosphate were observed in anoxic waters. Important nitrous oxide and nitrate concentration maxima were also observed (up to 440 nmol L-1 and 80 µmol L-1, respectively). Vertical profiles of δ13C-CH4 unambiguously showed the occurrence of AOM. Important AOM rates (up to 14 µmol L-1 d-1) were observed and often co-occurred with nitrate consumption peaks, suggesting the occurrence of AOM coupled with nitrate reduction. AOM coupled with sulfate reduction also occurred, since AOM rates tended to be lower when molybdate was added. CH4 oxidation was mostly aerobic (∼80% of total oxidation) in spring and winter, and almost exclusively anaerobic in summer and autumn. Despite important CH4 oxidation rates, the estimated CH4 fluxes from the water surface to the atmosphere were high (mean of 732 µmol m-2 d-1 in spring, summer and autumn, and up to 12,482 µmol m-2 d-1 in winter).


Assuntos
Lagos/química , Metano/química , Nitratos/química , Sulfatos/química , Compostos de Amônio/análise , Anaerobiose , Atmosfera , Bélgica , Dióxido de Carbono/análise , Ferro/análise , Manganês/análise , Metano/análise , Nitratos/análise , Óxido Nitroso/análise , Oxirredução , Fosfatos/análise , Estações do Ano , Sulfatos/análise , Sulfetos/análise
7.
Fish Shellfish Immunol ; 55: 550-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27346159

RESUMO

Hyperosmotic stress has often been investigated from osmoregulation perspectives while the effects of such stress on the immune capacity remain largely unexplored. In this study, striped catfish were submitted to three salinity profiles (freshwater, low saline water, saline water) during 20 days, followed by infection with a virulent bacteria, Edwardsiella ictaluri, responsible for the enteric septicaemia of catfish. Osmoregulatory (plasma osmolality, gill Na(+)K(+)ATPase), immune (blood cells, lysozyme activity, complement activity, respiratory burst) parameters and mortality rate were investigated. In addition, abundances of heat shock protein 70 and high mobility group box 1 were explored. With elevated salinity, plasma osmolality severely increased while gill Na(+)K(+)ATPase slightly increased. Salinity alone stimulated the number of granulocytes, lysozyme activity and respiratory burst but depleted the number of thrombocytes. Salinity in combination with infection stimulated the number of monocytes and ACH50. On the contrary, erythrocytes, hematocrit, heat shock protein 70 and high mobility group box 1 did not significantly vary with salinity profiles. Then, salinity induced earlier onset on mortalities after E. ictaluri inoculation whereas cumulative mortality reach 79.2%, 67.0% and 91.7% respectively in freshwater, low saline water and saline water. In conclusion, salinity stimulates several immune functions in striped catfish but prolonged exposure to excessive hyperosmotic condition may lead to excessive inflammatory response and death.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Imunidade Inata , Inflamação/veterinária , Pressão Osmótica , Animais , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase , Inflamação/etiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Sepse/imunologia , Sepse/microbiologia , Sepse/veterinária
8.
ISME J ; 10(11): 2582-2592, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27128994

RESUMO

Some prokaryotes are known to be specialized in the use of phytoplankton-derived dissolved organic carbon (DOCp) originated by exudation or cell lysis; however, direct quantification measurements are extremely rare. Several studies have described bacterial selectivity based on DOCp quality, but very few have focused on the quantity of DOCp, and the relative importance of each of these variables (for example, quantity versus quality) on prokaryote responses. We applied an adapted version of the MAR-FISH (microautoradiography coupled with catalyzed reporter deposition fluorescence in situ hybridization) protocol using radiolabelled exudates from axenic algal cultures to calculate a specialization index (d') for large bacterioplankton phylogenetic groups using DOCp from different phytoplankton species and at different concentrations to elucidate to what extent the bacterial response to DOCp is driven by resource quantity (different DOCp concentrations) or by quality (DOCp from different phytoplankton species). All bacterial phylogenetic groups studied had lower d' at higher DOCp concentration, indicating more generalist behavior at higher resource availabilities. Indeed, at increasing resource concentrations, most bacterial groups incorporated DOCp indiscriminately, regardless of its origin (or quality). At low resource concentrations, only some specialists were able to actively incorporate the various types of organic matter effectively. The variability of bacterial responses to different treatments was systematically higher at varying concentrations than at varying DOCp types, suggesting that, at least for this range of concentrations (10-100 µM), DOCp quantity affects bacterial responses more than quality does. Therefore, resource quantity may be more relevant than resource quality in the bacterial responses to DOCp and affect how bacterioplankton use phytoplankton-derived carbon.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fitoplâncton/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/química , Hibridização in Situ Fluorescente , Filogenia , Solubilidade
9.
Sci Rep ; 5: 13803, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26348272

RESUMO

Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth's early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth's early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth's largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.


Assuntos
Planeta Terra , Compostos Férricos , Ferro , Água/química , Biodiversidade , Congo , Microbiologia Ambiental , Ferro/química , Ruanda
10.
Microb Ecol ; 70(3): 596-611, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25912922

RESUMO

The microbial community composition in meromictic Lake Kivu, with one of the largest CH4 reservoirs, was studied using 16S rDNA and ribosomal RNA (rRNA) pyrosequencing during the dry and rainy seasons. Highly abundant taxa were shared in a high percentage between bulk (DNA-based) and active (RNA-based) bacterial communities, whereas a high proportion of rare species was detected only in either an active or bulk community, indicating the existence of a potentially active rare biosphere and the possible underestimation of diversity detected when using only one nucleic acid pool. Most taxa identified as generalists were abundant, and those identified as specialists were more likely to be rare in the bulk community. The overall number of environmental parameters that could explain the variation was higher for abundant taxa in comparison to rare taxa. Clustering analysis based on operational taxonomic units (OTUs at 0.03 cutoff) level revealed significant and systematic microbial community composition shifts with depth. In the oxic zone, Actinobacteria were found highly dominant in the bulk community but not in the metabolically active community. In the oxic-anoxic transition zone, highly abundant potentially active Nitrospira and Methylococcales were observed. The co-occurrence of potentially active sulfur-oxidizing and sulfate-reducing bacteria in the anoxic zone may suggest the presence of an active yet cryptic sulfur cycle.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , República Democrática do Congo , Filogenia , RNA Arqueal , RNA Bacteriano , Reação em Cadeia da Polimerase em Tempo Real , Ruanda , Estações do Ano , Análise de Sequência de DNA , Análise de Sequência de RNA
11.
PLoS One ; 9(10): e109500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25314144

RESUMO

We report organic and inorganic carbon distributions and fluxes in a large (>2000 km2) oligotrophic, tropical lake (Lake Kivu, East Africa), acquired during four field surveys, that captured the seasonal variations (March 2007-mid rainy season, September 2007-late dry season, June 2008-early dry season, and April 2009-late rainy season). The partial pressure of CO2 (pCO2) in surface waters of the main basin of Lake Kivu showed modest spatial (coefficient of variation between 3% and 6%), and seasonal variations with an amplitude of 163 ppm (between 579±23 ppm on average in March 2007 and 742±28 ppm on average in September 2007). The most prominent spatial feature of the pCO2 distribution was the very high pCO2 values in Kabuno Bay (a small sub-basin with little connection to the main lake) ranging between 11,213 ppm and 14,213 ppm (between 18 and 26 times higher than in the main basin). Surface waters of the main basin of Lake Kivu were a net source of CO2 to the atmosphere at an average rate of 10.8 mmol m(-2) d(-1), which is lower than the global average reported for freshwater, saline, and volcanic lakes. In Kabuno Bay, the CO2 emission to the atmosphere was on average 500.7 mmol m(-2) d(-1) (∼46 times higher than in the main basin). Based on whole-lake mass balance of dissolved inorganic carbon (DIC) bulk concentrations and of its stable carbon isotope composition, we show that the epilimnion of Lake Kivu was net autotrophic. This is due to the modest river inputs of organic carbon owing to the small ratio of catchment area to lake surface area (2.15). The carbon budget implies that the CO2 emission to the atmosphere must be sustained by DIC inputs of geogenic origin from deep geothermal springs.


Assuntos
Dióxido de Carbono/análise , Lagos/química , Processos Autotróficos , Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Carbonatos/análise , Carbonatos/química , República Democrática do Congo , Concentração de Íons de Hidrogênio , Oxigênio/química , Ruanda , Estações do Ano , Microbiologia da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...