Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 18(6): 20210551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728617

RESUMO

Mounting evidence suggests that climate change, agricultural intensification and disease are impacting bumblebee health and contributing to species' declines. Identifying how these factors impact insect communities at large spatial and temporal scales is difficult, partly because species may respond in different ways. Further, the necessary data must span large spatial and temporal scales, which usually means they comprise aggregated, presence-only records collected using numerous methods (e.g. diversity surveys, educational collections, citizen-science projects, standardized ecological surveys). Here, we use occupancy models, which explicitly correct for biases in the species observation process, to quantify the effect of changes in temperature, precipitation and floral resources on bumblebee site occupancy over the past 12 decades in North America. We find no evidence of genus-wide declines in site occupancy, but do find that occupancy is strongly related to temperature, and is only weakly related to precipitation or floral resources. We also find that more species are likely to be climate change 'losers' than 'winners' and that this effect is primarily associated with changing temperature. Importantly, all trends were highly species-specific, highlighting that genus or community-wide measures may not reflect diverse species-specific patterns that are critical in guiding allocation of conservation resources.


Assuntos
Agricultura , Mudança Climática , Animais , Abelhas , Ecossistema , América do Norte , Especificidade da Espécie , Temperatura
2.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
3.
Environ Entomol ; 48(1): 4-11, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30508116

RESUMO

Current pesticide risk assessment practices use the honey bee, Apis mellifera L., as a surrogate to characterize the likelihood of chemical exposure of a candidate pesticide for all bee species. Bees make up a diverse insect group that provides critical pollination services to both managed and wild ecosystems. Accordingly, they display a diversity of behaviors and vary greatly in their lifestyles and phenologies, such as their timing of emergence, degree of sociality, and foraging and nesting behaviors. Some of these factors may lead to disparate or variable routes of exposure when compared to honey bees. For those that possess life histories that are distinct from A. mellifera, further risk assessments may be warranted. In January 2017, 40 bee researchers, representative of regulatory agencies, academia, and agrochemical industries, gathered to discuss the current state of science on pesticide exposure to non-Apis bees and to determine how well honey bee exposure estimates, implemented by different regulatory agencies, may be protective for non-Apis bees. Workshop participants determined that although current risk assessment procedures for honey bees are largely conservative, several routes of exposure are unique to non-Apis bees and warranted further investigation. In this forum article, we discuss these key routes of exposure relevant to non-Apis bees and identify important research gaps that can help inform future bee risk assessment decisions.


Assuntos
Abelhas , Exposição Ambiental , Praguicidas/toxicidade , Animais , Feminino , Larva , Medição de Risco
4.
Environ Entomol ; 47(4): 822-833, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-29873687

RESUMO

Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.


Assuntos
Agricultura/métodos , Abelhas/fisiologia , Conservação dos Recursos Naturais/métodos , Flores/fisiologia , Polinização , Animais
5.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
6.
Sci Total Environ ; 496: 257-263, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25089687

RESUMO

Seabirds and other aquatic avifauna are highly sensitive to exposure to petroleum oils. A small amount of oil is sufficient to break down the feather barrier that is necessary to prevent water penetration and hypothermia. Far less attention has been paid to potential effects on aquatic birds of so called 'edible oils', non-petroleum oils such as vegetable and fish oils. In response to a sardine oil discharge by a vessel off the coast of British Columbia, we conducted an experiment to assess if feather exposure to sheens of sardine oil (ranging from 0.04 to 3 µm in thickness) resulted in measurable oil and water uptake and significant feather microstructure disruption. We designed the experiment based on a previous experiment on effects of petroleum oils on seabird feathers. Feathers exposed to the thinnest fish oil sheens (0.04 µm) resulted in measurable feather weight gain (from oil and water uptake) and significant feather microstructure disruption. Both feather weight gain and microstructure disruption increased with increasing fish oil thickness. Because of the absence of primary research on effects of edible oils on sea birds, we conducted interviews with wildlife rehabilitation professionals with experience rehabilitating sea birds after edible oil exposure. The consensus from interviews and our experiment indicated that physical contact with fish and other 'edible oils' in the marine environment is at least as harmful to seabirds as petroleum oils.


Assuntos
Aves/fisiologia , Monitoramento Ambiental , Plumas/anatomia & histologia , Plumas/química , Óleos de Peixe/química , Poluentes Químicos da Água/química , Animais , Colúmbia Britânica
7.
Ecol Appl ; 23(4): 829-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865233

RESUMO

In intensive agricultural landscapes, restoration within farms could enhance biodiversity and ecosystem services such as pollination by native pollinators. Although governments and conservation groups are promoting small-scale restoration on working farms, there are few studies that assess whether these practices enhance pollinator communities in restored areas. Further, there is no information on whether floral enhancements will deplete pollinators in adjacent fields by concentrating ambient populations or whether they result in a net increase in abundance in adjacent farm fields. We investigated whether field edges restored with native perennial plants in California's Central Valley agricultural region increased floral abundance and potential bee nesting sites, and native bee and syrphid fly abundance and diversity, in comparison to relatively unmanaged edges. Native bees and syrphid flies collected from flowers were more abundant, species-rich, and diverse at hedgerow sites than in weedy, unmanaged edges. Abundance of bees collected passively in pan traps was negatively correlated with floral abundance, was significantly different from communities captured by net sampling from flowers, and did not distinguish between site types; we therefore focused on the results of net samples and visual observations. Uncommon species of native bees were sevenfold more abundant on hedgerow flowers than on flowers at weedy, unmanaged edges. Of the species on flowers at hedgerows, 40% were exclusive to hedgerow sites, but there were no species exclusively found on flowers at control sites. Hedgerows were especially important for supporting less-common species of native bees in our intensive agricultural landscape. Hedgerows did not concentrate ambient native bee, honey bee, or syphid fly populations, and they acted as net exporters of native bees into adjacent fields. Within-farm habitat restoration such as hedgerow creation may be essential for enhancing native pollinator abundance and diversity, and for pollination services to adjacent crops.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Polinização/fisiologia , Animais , California , Flores , Comportamento de Nidação , Densidade Demográfica
8.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489285

RESUMO

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Modelos Teóricos , Polinização , Animais , Clima , Produtos Agrícolas , Flores , Densidade Demográfica
9.
Ecol Lett ; 14(10): 1062-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21806746

RESUMO

Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.


Assuntos
Abelhas/fisiologia , Ecossistema , Polinização/fisiologia , Agricultura , Animais , Biodiversidade
10.
Mar Pollut Bull ; 60(5): 672-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060137

RESUMO

Operational discharges of hydrocarbons from maritime activities can have major cumulative impacts on marine ecosystems. Small quantities of oil (i.e., 10 ml) results in often lethally reduced thermoregulation in seabirds. Thin sheens of oil and drilling fluids form around offshore petroleum production structures from currently permissible operational discharges of hydrocarbons. Methodology was developed to measure feather microstructure impacts (amalgamation index or AI) associated with sheen exposure. We collected feather samples from two common North Atlantic species of seabirds; Common Murres (Uria aalge) and Dovekies (Alle alle). Impacts were compared after feather exposure to crude oil and synthetic lubricant sheens of varying thicknesses. Feather weight and microstructure changed significantly for both species after exposure to thin sheens of crude oil and synthetic drilling fluids. Thus, seabirds may be impacted by thin sheens forming around offshore petroleum production facilities from discharged produced water containing currently admissible concentrations of hydrocarbons.


Assuntos
Charadriiformes/fisiologia , Ecossistema , Monitoramento Ambiental , Plumas/anatomia & histologia , Plumas/efeitos dos fármacos , Combustíveis Fósseis/toxicidade , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Vazamento de Resíduos Químicos , Plumas/fisiologia , Hidrocarbonetos Aromáticos/toxicidade , Medição de Risco , Navios , Fatores de Tempo , Volatilização
11.
Ecol Lett ; 11(5): 499-515, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18294214

RESUMO

Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.


Assuntos
Abelhas , Produtos Agrícolas/fisiologia , Ecossistema , Comportamento Alimentar , Polinização/fisiologia , Animais , Teorema de Bayes , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Modelos Biológicos , Sementes/crescimento & desenvolvimento , Clima Tropical
12.
Pest Manag Sci ; 61(7): 619-26, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15880684

RESUMO

Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Macrolídeos/toxicidade , Animais , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Comportamento Alimentar/efeitos dos fármacos , Larva/efeitos dos fármacos
13.
J Econ Entomol ; 97(2): 369-73, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15154457

RESUMO

We conducted laboratory experiments to investigate the lethal and sublethal effects of clothianidin on bumble bee, Bombus impatiens Cresson, colony health and foraging ability. Bumble bee colonies were exposed to 6 ppb clothianidin, representing the highest residue levels found in field studies on pollen, and a higher dose of 36 ppb clothianidin in pollen. Clothianidin did not effect pollen consumption, newly emerged worker weights, amount of brood or the number of workers, males, and queens at either dose. The foraging ability of worker bees tested on an artificial array of complex flowers also did not differ among treatments. These results suggest that clothianidin residues found in seed-treated canola and possibly other crops will not adversely affect the health of bumble bee colonies or the foraging ability of workers.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Guanidinas/farmacologia , Inseticidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Neonicotinoides , Resíduos de Praguicidas/análise , Pólen/química , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...