Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(3): e0150522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35608352

RESUMO

Human papillomaviruses (HPVs) consist of two capsid proteins: major capsid protein L1 and minor capsid protein L2. The L2 protein has been shown to be involved in intracellular trafficking events that lead to the deposition of the viral DNA into the nucleus. In this study, we investigate the role of HPV16 L2 residues 43-DQILQ-47 during intracellular trafficking in human keratinocytes. We demonstrate that the highly conserved amino acids aspartic acid, isoleucine, and leucine are involved with the intracellular trafficking of the virus. Amino acid substitution of the isoleucine and leucine residues with alanine residues results in a significant decrease in infectivity of the pseudovirions without any changes to the binding or internalization of the virus. The pseudovirions containing these substitutions exhibit an altered trafficking pattern and do not deposit the viral pseudogenome into the nucleus. Instead, these mutated pseudovirions display a lack of interaction with syntaxin 18, an ER SNARE protein, are unable to progress past the endoplasmic reticulum (ER) and are redirected to the lysosomes. The results of this study help to elucidate the role and potential involvement of the 43-DQILQ-47 sequence during intracellular trafficking, specifically during trafficking beyond the ER. IMPORTANCE High-risk types of human papillomaviruses (HPVs), such as HPV16, are highly associated with cervical, anogenital, and oropharyngeal cancers. The minor capsid protein L2 is essential for the intracellular trafficking of the viral DNA to the nucleus. This study investigates the role of amino acid residues 43-DQILQ-47 of the HPV16 L2 protein in the intracellular trafficking of the virus. Understanding how the virus traffics through the cell is a key factor in the development of additional preventative antiviral therapies. This study illustrates, through modification of the 43-DQILQ-47 sequence in pseudovirions, the importance of the 43-DQILQ-47 sequence in the trafficking of the virus beyond the endoplasmic reticulum.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Alphapapillomavirus/genética , Alphapapillomavirus/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Retículo Endoplasmático/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Espaço Intracelular/metabolismo , Isoleucina/metabolismo , Leucina/metabolismo , Papillomaviridae/genética , Transporte Proteico
2.
J Vis Exp ; (173)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34338665

RESUMO

Mesenchymal stem cells (MSC) have traditionally been studied for their regenerative properties, but more recently, their immunoregulatory characteristics have been at the forefront. They interact with and regulate immune cell activity. The focus of this study is the MSC regulation of macrophage phagocytic activity. Macrophage (MΦ) phagocytosis is an important part of the innate immune system response to infection, and the mechanisms through which MSC modulate this response are under active investigation. Presented here is a method to study MΦ phagocytosis of non-opsonized zymosan particles conjugated to a pH-sensitive fluorescent molecule while in co-culture with MSC. As phagocytic activity increases and the labeled zymosan particles are enclosed within the acidic environment of the phagolysosome, the fluorescence intensity of the pH-sensitive molecule increases. With the appropriate excitation and emission wavelengths, phagocytic activity is measured using a fluorescent spectrophotometer and kinetic data is presented as changes in relative fluorescent units over a 70 min period. To support this quantitative data, the change in the phagocytic activity is visualized using dynamic imaging. Results using this method demonstrate that when in co-culture, MSC enhance MΦ phagocytosis of non-opsonized zymosan of both naive and IFN-γ treated MΦ. These data add to the current knowledge of MSC regulation of the innate immune system. This method can be applied in future investigations to fully delineate the underlying cellular and molecular mechanisms.


Assuntos
Células-Tronco Mesenquimais , Técnicas de Cocultura , Macrófagos , Fagocitose , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...