Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Aquat Toxicol ; 271: 106906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588636

RESUMO

Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 µg L-1) or each enantiomer (at 0.10 or 1.0 µg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 µg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.


Assuntos
Daphnia , Oxirredução , Poluentes Químicos da Água , Daphnia/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Estereoisomerismo , Águas Residuárias/química , Águas Residuárias/toxicidade , Daphnia magna
2.
Elife ; 112022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36331876

RESUMO

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.


Assuntos
Caenorhabditis elegans , Regulação da Expressão Gênica , Animais , Caenorhabditis elegans/genética , Mecanismo Genético de Compensação de Dose , Cromossomo X/genética
3.
Mol Cell ; 82(22): 4202-4217.e5, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36302374

RESUMO

Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.


Assuntos
Adenosina Trifosfatases , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Cromossomos/metabolismo
4.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35731207

RESUMO

Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Duplicação Cromossômica , Variações do Número de Cópias de DNA , Mecanismo Genético de Compensação de Dose , Dosagem de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromossomo X
5.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739048

RESUMO

The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
6.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918745

RESUMO

Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


Assuntos
Proteínas de Caenorhabditis elegans , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA , Histona Desmetilases , Histonas/genética , Lisina , Complexos Multiproteicos , Cromossomo X/metabolismo
7.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34383014

RESUMO

Animals evolved in environments with variable nutrient availability and one form of adaptation is the delay of reproduction in food shortage conditions. Belew et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202009197) report that in the nematode C. elegans, starvation-induced transcriptional quiescence in germ cells is achieved through a pathway that combines two well-known chromatin compaction mechanisms.


Assuntos
Caenorhabditis elegans , Cromatina , Animais , Caenorhabditis elegans/genética , Cromatina/genética , Cromossomos , Células Germinativas
8.
Genetics ; 212(3): 729-742, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123040

RESUMO

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In Caenorhabditis elegans, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the X, the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Código das Histonas , Complexos Multiproteicos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Cromossomo X/genética , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/genética , Histonas/metabolismo , Complexos Multiproteicos/genética , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo
9.
Methods Mol Biol ; 1675: 111-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052189

RESUMO

Progression of a cell along a differentiation path is characterized by changes in gene expression profiles. Alterations of these transcriptional programs result from cell type-specific transcription factors that act in a dynamic chromatin environment. Understanding the precise contribution of these molecular factors during the differentiation process requires accessing specific cell types within a developing organ. This chapter describes a streamlined and alternative version of INTACT, a method enabling the isolation of specific cell populations by affinity-purification of tagged nuclei and the subsequent analysis of gene expression, transcription factor binding profiles, as well as chromatin state at a genome-wide scale. In particular, modifications of the nuclei isolation, capture, and purification procedures are proposed that improve time scale, yield, and purity. In addition, the combination of different tags enables the analysis of distinct cell populations from a single transgenic line and the subtractive purification of subpopulations of cells, including those for which no specific promoter is available. Finally, we describe a chromatin immunoprecipitation protocol that has been successfully used to profile histone modifications and other chromatin-associated proteins such as RNA Polymerase II in different cell populations of the Arabidopsis root, including the quiescent center of the stem cell niche.


Assuntos
Cromatina/genética , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Separação Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Especificidade de Órgãos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica
10.
Plant Cell ; 28(10): 2616-2631, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27650334

RESUMO

Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and nonvascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ.


Assuntos
Arabidopsis/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas/genética
11.
Curr Opin Plant Biol ; 34: 27-34, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27522467

RESUMO

Plants are characterized by a remarkable phenotypic plasticity that meets the constraints of a sessile lifestyle and the need to adjust constantly to the environment. Recent studies have begun to reveal how chromatin dynamics participate in coordinating cell proliferation and differentiation in response to developmental cues as well as environmental fluctuations. In this review, we discuss the pivotal function of chromatin-based mechanisms in cell fate acquisition and maintenance, within as well as outside meristems. In particular, we highlight the emerging role of specific epigenomic factors and chromatin pathways in timing the activity of stem cells, counting cell divisions and positioning cell fate transitions by sensing phytohormone gradients.


Assuntos
Cromatina/metabolismo , Células Vegetais/metabolismo , Plantas/genética , Plantas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Vegetais/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
12.
Plant J ; 85(2): 320-333, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26662936

RESUMO

Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genômica/métodos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas
13.
Nat Plants ; 1: 15089, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250255

RESUMO

Plant somatic cells are generally acknowledged to retain totipotency, the potential to develop into any cell type within an organism. This astonishing plasticity may contribute to a high regenerative capacity on severe damage, but how plants control this potential during normal post-embryonic development remains largely unknown(1,2). Here we show that POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a chromatin regulator that maintains gene repression through histone modification, prevents dedifferentiation of mature somatic cells in Arabidopsis thaliana roots. Loss-of-function mutants in PRC2 subunits initially develop unicellular root hairs indistinguishable from those in wild type but fail to retain the differentiated state, ultimately resulting in the generation of an unorganized cell mass and somatic embryos from a single root hair. Strikingly, mutant root hairs complete the normal endoreduplication programme, increasing their nuclear ploidy, but subsequently reinitiate mitotic division coupled with successive DNA replication. Our data show that the WOUND INDUCED DEDIFFERENTIATION3 (WIND3) and LEAFY COTYLEDON2 (LEC2) genes are among the PRC2 targets involved in this reprogramming, as their ectopic overexpression partly phenocopies the dedifferentiation phenotype of PRC2 mutants. These findings unveil the pivotal role of PRC2-mediated gene repression in preventing unscheduled reprogramming of fully differentiated plant cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...