Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174033, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885708

RESUMO

Disturbed soils, including manufactured topsoils, often lack physical and chemical properties conducive to vegetation establishment. As a result, efforts to stabilize disturbed soils with vegetation are susceptible to failure. Urban organic waste products such as wood mulch, composted leaf and yard waste, and biosolids are widely distributed as organic amendments that enhance sustainability and plant establishment. Correct use can be determined by examining soil properties such as pH; the concentration of soluble salts (SS); and plant available nutrients - particularly N, C and P; as well as root and shoot growth. This research examined the effects of three typical organic amendments on fertility, establishment, and nutrient loss. A manufactured topsoil was used as the base soil for all treatments, including a control unamended soil (CUT), and soil amended with either mulch (MAT), composted leaf and yard waste (LAT), or biosolids (BAT). A 2 % organic matter concentration increase was sought but not achieved due to difficulty in reproducing lab results at a larger scale. Results showed that LAT improved soil fertility, particularly N-P-K concentrations while maintaining a good C:N ratio, pH, and SS concentration. BAT was the most effective at enhancing shoot growth but results suggest that improved growth rates could result in increased maintenance. Additionally, biosolids were an excellent source of nutrients, especially N-P-K and S, but diminished root growth and N leachate losses indicate that N was applied in excess of turfgrass requirements. Therefore, biosolids could be used as fertilizer, subject to recommended rates for turfgrass establishment to prevent poor root growth and waterborne N pollution. To ensure establishment efforts are successful, MAT is not recommended without a supplemental source of soluble N. Altogether, study results and conclusions could inform others seeking to improve specifications for disturbed soil where turfgrass establishment is needed to stabilize soil.

2.
Sci Total Environ ; 918: 170649, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331290

RESUMO

Anthropogenic disturbance of soils can disrupt soil structure, diminish fertility, alter soil chemical properties, and cause erosion. Current remediation practices involve amending degraded urban topsoils lacking in organic matter and nutrition with organic amendments (OA) to enhance vegetative growth. However, the impact of OAs on water quality and structural properties at rates that meet common topsoil organic matter specifications need to be studied and understood. This study tested three commonly available OAs: shredded wood mulch, leaf-based compost, and class A Exceptional Quality stabilized sewage sludge (or biosolids) for nutrient (nitrogen and phosphorus) water quality, soil shear strength, and hydraulic properties, through two greenhouse tub studies. Findings showed that nitrogen losses to leachate were greater in the biosolids amended topsoils compared to leaf-compost, mulch amended topsoils, and control treatments. Steady-state mean total nitrogen (N) concentrations from biosolids treatment exceeded typical highway stormwater concentrations by at least 25 times. Soil total N content combined with the carbon:nitrogen ratio were identified to be the governing properties of N leaching in soils. Study soils, irrespective of the type of amendment, reduced the applied (tap) water phosphorus (P) concentration of ∼0.3 mg-P/L throughout the experiment. Contrary to the effects on N leaching, P was successfully retained by the biosolids amendment, due to the presence of greater active iron contents. A breakthrough mechanism for P was observed in leaf compost amended soil, where the effluent concentrations of P continued to increase with each rainfall application, possibly due to an saturation of soil adsorption sites. The addition of OAs also improved the strength and hydraulic properties of soils. The effective interlocking mechanisms between the soil and OA surfaces could provide soil its required strength and stability, particularly on slopes. OAs also improved soil fertility to promote turf growth. Presence of vegetative root zones can further reinforce the soil and control erosion.


Assuntos
Compostagem , Poluentes do Solo , Biossólidos , Resistência ao Cisalhamento , Solo/química , Fósforo/química , Nutrientes , Poluentes do Solo/análise , Esgotos/química , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...