Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 128: 106074, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987188

RESUMO

The imidazo[1,2-a]pyridine-3-carboxyamides (IAPs) are a unique class of compounds endowed with impressive nanomolar in vitro potency against Mycobacterium tuberculosis (Mtb) as exemplified by clinical candidate Telacebec (Q203). These compounds target mycobacterial respiration through inhibition of the QcrB subunit of cytochrome bc1:aa3 super complex resulting in bacteriostatic efficacy in vivo. Our labs have had a long-standing interest in the design and development of IAPs. However, some of these compounds suffer from short in vivo half-lives, requiring multiple daily dosing or the addition of a cytochrome P450 inhibitor for murine efficacy evaluations. Deuteration has been shown to decrease metabolism as the C-D bond is stronger than the CH bond. Herein we describe our efforts on design and synthesis of potent deuterated IAPs and the effect that deuteration has upon metabolism through microsomal stability studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/química , Humanos , Camundongos , Piridinas/metabolismo , Piridinas/farmacologia , Tuberculose/microbiologia
2.
RSC Med Chem ; 12(1): 62-72, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046598

RESUMO

The formation efficiency of hydride-induced Meisenheimer complexes of nitroaromatic compounds is consistent with their anti-TB activities exemplied by MDL860 and benzothiazol N-oxide (BTO) analogs. Herein we report that nitro cyano phenoxybenzenes (MDL860 and analogs) reacted slowly and incompletely which reflected their moderate anti-TB activity, in contrast to the instantaneous reaction of BTO derivatives to quantitatively generate Meisenheimer complexes which corresponded to their enhanced anti-TB activity. These results were corroborated by mycobacterial and radiolabelling studies that confirmed inhibition of the DprE1 enzyme by BTO derivatives but not MDL860 analogs.

3.
RSC Med Chem ; 12(1): 73-77, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046599

RESUMO

Cytochrome bd oxidase (Cyt-bd) is an attractive drug target in Mycobacterium tuberculosis, especially in the context of developing a drug combination targeting energy metabolism. However, currently few synthetically assessable scaffolds target Cyt-bd. Herein, we report that thieno[3,2-d]pyrimidin-4-amines inhibit Cyt-bd, and report an initial structure-activity-relationship (SAR) of 13 compounds in three mycobacterial strains: Mycobacterium bovis BCG, Mycobacterium tuberculosis H37Rv and Mycobacterium tuberculosis clinical isolate N0145 in an established ATP depletion assay with or without the cytochrome bcc : aa 3 (QcrB) inhibitor Q203. All compounds displayed activity against M. bovis BCG and the M. tuberculosis clinical isolate strain N0145 with ATP IC50 values from 6 to 54 µM in the presence of Q203 only, as expected from a Cyt-bd inhibitor. All derivatives were much less potent against M. tuberculosis H37Rv compared to N0145 (IC50's from 24 to >100 µM and 9-52 µM, respectively), an observation that may be attributed to the higher expression of the Cyt-bd-encoding genes in the laboratory-adapted M. tuberculosis H37Rv strain. N-(4-(tert-butyl)phenethyl)thieno[3,2-d]pyrimidin-4-amine (19) was the most active compound with ATP IC50 values from 6 to 18 µM against all strains in the presence of Q203, making it a good chemical probe for interrogation the function of the mycobacterial Cyt-bd under various physiological conditions.

4.
Appl Sci (Basel) ; 11(19)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36698770

RESUMO

The development of cytochrome bd oxidase (cyt-bd) inhibitors are needed for comprehensive termination of energy production in Mycobacterium tuberculosis (Mtb) to treat tuberculosis infections. Herein, we report on the structure-activity-relationships (SAR) of 22 new N-phenethyl-quinazolin-4-yl-amines that target cyt-bd. Our focused set of compounds was synthesized and screened against three mycobacterial strains: Mycobacterium bovis BCG, Mycobacterium tuberculosis H37Rv and the clinical isolate Mycobacterium tuberculosis N0145 with and without the cytochrome bcc:aa 3 inhibitor Q203 in an ATP depletion assay. Two compounds, 12a and 19a, were more active against all three strains than the naturally derived cyt-bd inhibitor aurachin D.

5.
EMBO Mol Med ; 13(1): e13207, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283973

RESUMO

The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1 F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos , Antituberculosos/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Oxirredutases , Tuberculose/tratamento farmacológico
6.
PLoS One ; 15(1): e0227224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31905374

RESUMO

The imidazo[2,1-b]thiazole-5-carboxamides (ITAs) are a promising class of anti-tuberculosis agents shown to have potent activity in vitro and to target QcrB, a key component of the mycobacterial cytochrome bcc-aa3 super complex critical for the electron transport chain. Herein we report the intracellular macrophage potency of nine diverse ITA analogs with MIC values ranging from 0.0625-2.5 µM and mono-drug resistant potency ranging from 0.0017 to 7 µM. The in vitro ADME properties (protein binding, CaCo-2, human microsomal stability and CYP450 inhibition) were determined for an outstanding compound of the series, ND-11543. ND-11543 was tolerable at >500 mg/kg in mice and at a dose of 200 mg/kg displayed good drug exposure in mice with an AUC(0-24h) >11,700 ng·hr/mL and a >24 hr half-life. Consistent with the phenotype observed with other QcrB inhibitors, compound ND-11543 showed efficacy in a chronic murine TB infection model when dosed at 200 mg/kg for 4 weeks. The efficacy was not dependent upon exposure, as pre-treatment with a known CYP450-inhibitor did not substantially improve efficacy. The ITAs are an interesting scaffold for the development of new anti-TB drugs especially in combination therapy based on their favorable properties and novel mechanism of action.


Assuntos
Antituberculosos/uso terapêutico , Imidazóis/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazóis/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Células CACO-2 , Chlorocebus aethiops , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Humanos , Imidazóis/química , Imidazóis/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Células RAW 264.7 , Tiazóis/química , Tiazóis/farmacologia , Células Vero
7.
Sci Rep ; 9(1): 8608, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197236

RESUMO

The influence of carbon metabolism on oxidative phosphorylation is poorly understood in mycobacteria. M. tuberculosis expresses two respiratory terminal oxidases, the cytochrome bc1:aa3 and the cytochrome bd oxidase, which are jointly required for oxidative phosphorylation and mycobacterial viability. The essentiality of the cytochrome bc1:aa3 for optimum growth is illustrated by its vulnerability to chemical inhibition by the clinical drug candidate Q203 and several other chemical series. The cytochrome bd oxidase is not strictly essential for growth but is required to maintain bioenergetics when the function of the cytochrome bc1:aa3 is compromised. In this study, we observed that the potency of drugs targeting the cytochrome bc1:aa3 is influenced by carbon metabolism. The efficacy of Q203 and related derivatives was alleviated by glycerol supplementation. The negative effect of glycerol supplementation on Q203 potency correlated with an upregulation of the cytochrome bd oxidase-encoding cydABDC operon. Upon deletion of cydAB, the detrimental effect of glycerol on the potency of Q203 was abrogated. The same phenomenon was also observed in recent clinical isolates, but to a lesser extent compared to the laboratory-adapted strain H37Rv. This study reinforces the importance of optimizing in vitro culture conditions for drug evaluation in mycobacteria, a factor which appeared to be particularly essential for drugs targeting the cytochrome bc1:aa3 terminal oxidase.


Assuntos
Antituberculosos/farmacologia , Carbono/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Resistência a Medicamentos/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Imidazóis/farmacologia , Mutação/genética , Mycobacterium tuberculosis/isolamento & purificação , Óperon/genética , Piperidinas/farmacologia , Piridinas/farmacologia
8.
Arch Biochem Biophys ; 664: 40-50, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30689984

RESUMO

The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.3 Å, revealing a formyltransferase fold consistent with N10-formyltetrahydrofolate dependent enzymes, such as the glycinamide ribonucleotide transformylases, N-sugar transformylases and methionyl-tRNA transformylases. Whereas the core structure, including the catalytic triad, is conserved, PvdF has three insertions of 18 or more amino acids, which we hypothesize are key to binding the OHOrn substrate. Steady state kinetics revealed a non-hyperbolic rate curve, promoting the hypothesis that PvdF uses a random-sequential mechanism, and favors folate binding over OHOrn.


Assuntos
Formiltetra-Hidrofolatos/metabolismo , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Oligopeptídeos/biossíntese , Ácido Fólico/metabolismo , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/enzimologia
9.
Nat Commun ; 9(1): 5370, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560872

RESUMO

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc1:aa3. While the cytochrome bc1:aa3 is the primary terminal oxidase in Mycobacterium tuberculosis, the presence of an alternate bd-type terminal oxidase limits the bactericidal and sterilizing potency of Q203 against this bacterium. M. ulcerans strains found in Buruli ulcer patients from Africa and Australia lost all alternate terminal electron acceptors and rely exclusively on the cytochrome bc1:aa3 to respire. As a result, Q203 is bactericidal at low dose against M. ulcerans replicating in vitro and in mice, making the drug a promising candidate for Buruli ulcer treatment.


Assuntos
Antibióticos Antituberculose/farmacologia , Úlcera de Buruli/tratamento farmacológico , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium ulcerans/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , África , Animais , Antibióticos Antituberculose/uso terapêutico , Austrália , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium ulcerans/metabolismo , Doenças Negligenciadas/microbiologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Resultado do Tratamento
10.
Artigo em Inglês | MEDLINE | ID: mdl-29632008

RESUMO

The imidazopyridines are a promising new class of antitubercular agents with potent activity in vitro and in vivo We isolated mutants of Mycobacterium tuberculosis resistant to a representative imidazopyridine; the mutants had large shifts (>20-fold) in MIC. Whole-genome sequencing revealed mutations in Rv1339, a hypothetical protein of unknown function. We isolated mutants resistant to three further compounds from the series; resistant mutants isolated from two of the compounds had single nucleotide polymorphisms in Rv1339 and resistant mutants isolated from the third compound had single nucleotide polymorphisms in QcrB, the proposed target for the series. All the strains were resistant to two compounds, regardless of the mutation, and a strain carrying the QcrB T313I mutation was resistant to all of the imidazopyridine derivatives tested, confirming cross-resistance. By monitoring pH homeostasis and ATP generation, we confirmed that compounds from the series were targeting QcrB; imidazopyridines disrupted pH homeostasis and depleted ATP, providing further evidence of an effect on the electron transport chain. A representative compound was bacteriostatic against replicating bacteria, consistent with a mode of action against QcrB. The series had a narrow inhibitory spectrum, with no activity against other bacterial species. No synergy or antagonism was seen with other antituberculosis drugs under development. In conclusion, our data support the hypothesis that the imidazopyridine series functions by reducing ATP generation via inhibition of QcrB.


Assuntos
Trifosfato de Adenosina/metabolismo , Antituberculosos/farmacologia , Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Piridinas/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Testes de Sensibilidade Microbiana , Mutação/genética , Sequenciamento Completo do Genoma
11.
J Biol Chem ; 293(11): 3989-3999, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29414780

RESUMO

The H2O2-dependent oxidative decarboxylation of coproheme III is the final step in the biosynthesis of heme b in many microbes. However, the coproheme decarboxylase reaction mechanism is unclear. The structure of the decarboxylase in complex with coproheme III suggested that the substrate iron, reactive propionates, and an active-site tyrosine convey a net 2e-/2H+ from each propionate to an activated form of H2O2 Time-resolved EPR spectroscopy revealed that Tyr-145 formed a radical species within 30 s of the reaction of the enzyme-coproheme complex with H2O2 This radical disappeared over the next 270 s, consistent with a catalytic intermediate. Use of the harderoheme III intermediate as substrate or substitutions of redox-active side chains (W198F, W157F, or Y113S) did not strongly affect the appearance or intensity of the radical spectrum measured 30 s after initiating the reaction with H2O2, nor did it change the ∼270 s required for the radical signal to recede to ≤10% of its initial intensity. These results suggested Tyr-145 as the site of a catalytic radical involved in decarboxylating both propionates. Tyr-145• was accompanied by partial loss of the initially present Fe(III) EPR signal intensity, consistent with the possible formation of Fe(IV)=O. Site-specifically deuterated coproheme gave rise to a kinetic isotope effect of ∼2 on the decarboxylation rate constant, indicating that cleavage of the propionate Cß-H bond was partly rate-limiting. The inferred mechanism requires two consecutive hydrogen atom transfers, first from Tyr-145 to the substrate Fe/H2O2 intermediate and then from the propionate Cß-H to Tyr-145•.


Assuntos
Carboxiliases/metabolismo , Compostos Férricos/química , Radicais Livres/química , Heme/metabolismo , Peróxido de Hidrogênio/química , Propionatos/química , Tirosina/química , Carboxiliases/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Cinética , Modelos Moleculares , Mutação , Oxirredução
12.
ChemMedChem ; 12(14): 1108-1115, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654200

RESUMO

The global fight to stop tuberculosis (TB) remains a great challenge, particularly with the increase in drug-resistant strains and a lack of funding to support the development of new treatments. To bolster a precarious drug pipeline, we prepared a focused panel of eight pentafluorosulfanyl (SF5 ) compounds which were screened for their activity against Mycobacterium tuberculosis (Mtb) H37Rv in three different assay conditions and media. All eight compounds had sub-micromolar potency, and four displayed MICs <100 nm. Seven compounds were evaluated against non-replicating and mono-drug-resistant Mtb, and for their ability to inhibit Mtb within the macrophage. The greatest potency was observed against intracellular Mtb (MIC <10 nm for three compounds), which is often the most challenging to target. In general, the SF5 -bearing compounds were very similar to their CF3 counterparts, with the major differences observed being their in vitro ADME properties. Two SF5 -bearing compounds were found to have greater protein binding than their corresponding CF3 counterparts, but were also less metabolized in human microsomes, resulting in longer half-lives.


Assuntos
Antituberculosos/síntese química , Imidazóis/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/síntese química , Ácidos Sulfanílicos/síntese química , Animais , Antituberculosos/farmacologia , Linhagem Celular , Farmacorresistência Bacteriana , Humanos , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Piridinas/farmacologia , Relação Estrutura-Atividade , Ácidos Sulfanílicos/farmacologia
13.
J Am Chem Soc ; 139(5): 1900-1911, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27936663

RESUMO

Coproheme decarboxylase catalyzes two sequential oxidative decarboxylations with H2O2 as the oxidant, coproheme III as substrate and cofactor, and heme b as the product. Each reaction breaks a C-C bond and results in net loss of hydride, via steps that are not clear. Solution and solid-state structural characterization of the protein in complex with a substrate analog revealed a highly unconventional H2O2-activating distal environment with the reactive propionic acids (2 and 4) on the opposite side of the porphyrin plane. This suggested that, in contrast to direct C-H bond cleavage catalyzed by a high-valent iron intermediate, the coproheme oxidations must occur through mediating amino acid residues. A tyrosine that hydrogen bonds to propionate 2 in a position analogous to the substrate in ascorbate peroxidase is essential for both decarboxylations, while a lysine that salt bridges to propionate 4 is required solely for the second. A mechanism is proposed in which propionate 2 relays an oxidizing equivalent from a coproheme compound I intermediate to the reactive deprotonated tyrosine, forming Tyr•. This residue then abstracts a net hydrogen atom (H•) from propionate 2, followed by migration of the unpaired propionyl electron to the coproheme iron to yield the ferric harderoheme and CO2 products. A similar pathway is proposed for decarboxylation of propionate 4, but with a lysine residue as an essential proton shuttle. The proposed reaction suggests an extended relay of heme-mediated e-/H+ transfers and a novel route for the conversion of carboxylic acids to alkenes.


Assuntos
Aminoácidos/metabolismo , Carboxiliases/metabolismo , Aminoácidos/química , Carboxiliases/química , Carboxiliases/isolamento & purificação , Descarboxilação , Geobacillus stearothermophilus/enzimologia , Cinética , Estrutura Molecular , Oxirredução
14.
ACS Infect Dis ; 2(6): 393-8, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27627627

RESUMO

Increasing interest in the potent anti-tuberculosis activity and the novel target (QcrB) of imidazo[1,2-a]pyridine-3-carboxamides encouraged extended structure-activity relationship studies of additional scaffolds. This study reports on the in vitro profiling of the imidazo[2,1-b]thiazole-5-carboxamides as a new promising class of anti-tuberculosis compounds endowed with nanomolar potency against replicating and drug-resistant Mycobacterium tuberculosis (Mtb) as well as low toxicity to VERO cells. Compounds 6, 16, and 17 had MIC values <10 nM and toxicity >100 µM. On-target selectivity of this series was confirmed by cross-resistance of specific QcrB mutants as well as the hypersusceptibility of a mutant with a functional gene deletion of the alternative cytochrome bd oxidase. Additionally, to demonstrate selectivity, three analogues (6, 15, 17) were broadly screened against a diverse set of eight strains of bacteria, including both Gram-positive and Gram-negative as well as six disease-causing non-tuberculosis mycobacteria. Finally, compounds 16 and 17 were found to be active in macrophages infected with Mtb.


Assuntos
Antituberculosos/farmacologia , Imidazóis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazóis/química , Tuberculose/microbiologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Chlorocebus aethiops , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Células Vero
15.
Antimicrob Agents Chemother ; 60(8): 5018-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216051

RESUMO

A panel of six imidazo[1,2-a]pyridine-3-carboxamides (IAPs) were shown to have low-micromolar activity against Mycobacterium avium strains. Compound ND-10885 (compound 2) showed significant activity in the lung, spleen, and liver in a mouse M. avium infection model. A combined regimen consisting of ND-10885 (compound 2) and rifampin was additive in its anti-M. avium activity in the lung. Our data indicate that IAPs represent a new class of antibiotics that are active against M. avium and could potentially serve as an effective addition to a combined treatment regimen.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Mycobacterium avium/efeitos dos fármacos , Mycobacterium avium/patogenicidade , Animais , Anti-Infecciosos/química , Imidazóis/química , Camundongos , Testes de Sensibilidade Microbiana , Infecção por Mycobacterium avium-intracellulare/microbiologia , Piridinas/química
16.
Biochemistry ; 54(26): 4022-32, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26083961

RESUMO

A recently proposed pathway for heme b biosynthesis, common to diverse bacteria, has the conversion of two of the four propionates on coproheme III to vinyl groups as its final step. This reaction is catalyzed in a cofactor-independent, H2O2-dependent manner by the enzyme HemQ. Using the HemQ from Staphylococcus aureus (SaHemQ), the initial decarboxylation step was observed to rapidly and obligately yield the three-propionate harderoheme isomer III as the intermediate, while the slower second decarboxylation appeared to control the overall rate. Both synthetic harderoheme isomers III and IV reacted when bound to HemQ, the former more slowly than the latter. While H2O2 is the assumed biological oxidant, either H2O2 or peracetic acid yielded the same intermediates and products, though amounts significantly greater than the expected 2 equiv were required in both cases and peracetic acid reacted faster. The ability of peracetic acid to substitute for H2O2 suggests that, despite the lack of catalytic residues conventionally present in heme peroxidase active sites, reaction pathways involving high-valent iron intermediates cannot be ruled out.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredutases/metabolismo , Staphylococcus aureus/enzimologia , Cinética , Modelos Moleculares , Ácido Peracético/metabolismo , Staphylococcus aureus/metabolismo
17.
ACS Infect Dis ; 1(2): 85-90, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25984566

RESUMO

Zolpidem (Ambien, 1) is an imidazo[1,2-a]pyridine-3-acetamide and an approved drug for the treatment of insomnia. As medicinal chemists enamored by how structure imparts biological function, we found it to have strikingly similar structure to the antitubercular imidazo[1,2-a]pyridine-3-carboxyamides. Zolpidem was found to have antituberculosis activity (MIC of 10-50 µM) when screened against replicating Mycobacterium tuberculosis (Mtb) H37Rv. Manipulation of the Zolpidem structure, notably, to structural isomers ("anagrams"), attains remarkably improved potency (5, MIC of 0.004 µM) and impressive potency against clinically relevant drug-sensitive, multi- and extensively drug-resistant Mtb strains (MIC < 0.03 µM). Zolpidem anagrams and analogues were synthesized and evaluated for their antitubercular potency, toxicity, and spectrum of activity against nontubercular mycobacteria and Gram-positive and Gram-negative bacteria. These efforts toward the rational design of isomeric anagrams of a well-known sleep aid underscore the possibility that further optimization of the imidazo[1,2-a]pyridine core may well "put TB to rest".

18.
Bioorg Med Chem Lett ; 24(15): 3493-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909079

RESUMO

A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC's of 0.1 µM and 1.3 µM) and were inactive (MIC >128 µM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 µM, respectively), Mycobacterium kansasii (4 and 19 µM, respectively), Mycobacterium bovis BCG (1 and 8 µM, respectively) while all the other scaffolds were inactive (>128 µM).


Assuntos
Antituberculosos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Compostos Heterocíclicos/farmacologia , Hidrocarbonetos Aromáticos/farmacologia , Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidrocarbonetos Aromáticos/síntese química , Hidrocarbonetos Aromáticos/química , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
19.
PLoS One ; 9(1): e87483, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498115

RESUMO

Tuberculosis remains a global threat due in part to the long treatment regimen and the increased prevalence of drug resistant M. tuberculosis strains. Therefore, new drug regimens are urgently required to combat this deadly disease. We previously synthesized and evaluated a series of new anti-tuberculosis compounds which belong to the family of imidazo[1,2-a]pyridines. This family of compounds showed low nM MIC (minimal inhibitory concentration) values against M. tuberculosis in vitro. In this study, a derivative of imidazo[1,2-a]pyridines, (N-(4-(4-chlorophenoxy)benzyl)-2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamide) (ND-09759), was selected as a promising lead compound to determine its protective efficacy using a mouse infection model. Pharmacokinetic analysis of ND-09759 determined that at a dosage of 30 mg/kg mouse body weight (PO) gave a maximum serum drug concentration (Cmax) of 2.9 µg/ml and a half-life of 20.1 h. M. tuberculosis burden in the lungs and spleens was significantly decreased in mice treated once daily 6 days per week for 4-weeks with ND-09759 compared to untreated mice and this antibiotic activity was equivalent to isoniazid (INH) and rifampicin (RMP), two first-line anti-TB drugs. We observed slightly higher efficacy when using a combination of ND-09759 with either INH or RMP. Finally, the histopathological analysis revealed that infected mice treated with ND-09759 had significantly reduced inflammation relative to untreated mice. In conclusion, our findings indicate ND-09759 might be a potent candidate for the treatment of active TB in combination with current standard anti-TB drugs.


Assuntos
Antituberculosos , Imidazóis , Mycobacterium tuberculosis , Piridinas , Tuberculose , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Feminino , Células Hep G2 , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/patologia
20.
ACS Med Chem Lett ; 4(7): 675-679, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23930153

RESUMO

A set of fourteen imidazo[1,2-a]pyridine-3-carboxamides was synthesized and screened against Mycobacterium tuberculosis H37Rv. The minimum inhibitory concentrations of twelve of these agents were ≤ 1 µM against replicating bacteria and five compounds (9, 12, 16, 17 and 18) had MIC values ≤ 0.006 µM. Compounds 13 and 18 were screened against a panel of MDR and XDR drug resistant clinical Mtb strains with the potency of 18 surpassing that of clinical candidate PA-824 by nearly 10 fold. The in vivo pharmacokinetics of compounds 13 and 18 were evaluated in male mice by oral (PO) and intravenous (IV) routes. These results indicate that readily synthesized imidazo[1,2-a]pyridine-3-carboxamides are an exciting new class of potent, selective anti-TB agents that merit additional development opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...