Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000601

RESUMO

Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.


Assuntos
Doença de Chagas , Macrófagos , Proteômica , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/imunologia , Proteômica/métodos , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/imunologia , Antígenos CD/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Receptores de Superfície Celular/metabolismo , Inflamassomos/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Glicoproteínas de Membrana
2.
Biol Proced Online ; 26(1): 18, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898416

RESUMO

BACKGROUND: The lack of standardized protocols for isolating extracellular vesicles (EVs), especially from biobank-stored blood plasma, translates to limitations for the study of new biomarkers. This study examines whether a combination of current isolation methods could enhance the specificity and purity of isolated EVs for diagnosis and personalized medicine purposes. RESULTS: EVs were isolated from healthy human plasma stored for one year by ultracentrifugation (UC), size exclusion chromatography (SEC), or SEC and UC combined (SEC + UC). The EV isolates were then characterized by transmission electron microscopy imaging, nanoparticle tracking analysis (NTA) and western blotting. Proteomic procedures were used to analyze protein contents. The presence of EV markers in all isolates was confirmed by western blotting yet this analysis revealed higher albumin expression in EVs-UC, suggesting plasma protein contamination. Proteomic analysis identified 542 proteins, SEC + UC yielding the most complex proteome at 364 proteins. Through gene ontology enrichment, we observed differences in the cellular components of EVs and plasma in that SEC + UC isolates featured higher proportions of EV proteins than those derived from the other two methods. Analysis of proteins unique to each isolation method served to identify 181 unique proteins for the combined approach, including those normally appearing in low concentrations in plasma. This indicates that with this combined method, it is possible to detect less abundant plasma proteins by proteomics in the resultant isolates. CONCLUSIONS: Our findings reveal that the SEC + UC approach yields highly pure and diverse EVs suitable for comprehensive proteomic analysis with applications for the detection of new biomarkers in biobank-stored plasma samples.

3.
Genes (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927711

RESUMO

The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost if these resources are incomplete. Here, we show that most proteomics data may be recovered by interconnecting genomics and proteomics approaches (i.e., following a proteogenomic strategy), resulting, in turn, in an improvement of gene/protein models. In this study, we generated proteomics data from Leishmania donovani (HU3 strain) promastigotes that allowed us to detect 1908 proteins in this developmental stage on the basis of the currently annotated proteins available in public databases. However, when the proteomics data were searched against all possible open reading frames existing in the L. donovani genome, twenty new protein-coding genes could be annotated. Additionally, 43 previously annotated proteins were extended at their N-terminal ends to accommodate peptides detected in the proteomics data. Also, different post-translational modifications (phosphorylation, acetylation, methylation, among others) were found to occur in a large number of Leishmania proteins. Finally, a detailed comparative analysis of the L. donovani and Leishmania major experimental proteomes served to illustrate how inaccurate conclusions can be raised if proteomes are compared solely on the basis of the listed proteins identified in each proteome. Finally, we have created data entries (based on freely available repositories) to provide and maintain updated gene/protein models. Raw data are available via ProteomeXchange with the identifier PXD051920.


Assuntos
Genoma de Protozoário , Leishmania donovani , Proteogenômica , Proteínas de Protozoários , Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteogenômica/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Proteoma/genética , Anotação de Sequência Molecular
4.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811853

RESUMO

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Assuntos
Caenorhabditis elegans , Cisteína , Cistina , Camundongos Knockout , Oxirredução , Proteoma , Tiorredoxinas , Animais , Humanos , Camundongos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cisteína/metabolismo , Cistina/metabolismo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteoma/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA