Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326791

RESUMO

Repulsive guidance molecule A (RGMa) is an inhibitor of neuronal growth and survival which is upregulated in the damaged central nervous system following acute spinal cord injury (SCI), traumatic brain injury, acute ischemic stroke (AIS), and other neuropathological conditions. Neutralization of RGMa is neuroprotective and promotes neuroplasticity in several preclinical models of neurodegeneration and injury including multiple sclerosis, AIS, and SCI. Given the limitations of current treatments for AIS due to narrow time windows to intervention (TTI), and restrictive patient selection criteria, there is significant unmet need for therapeutic agents that enable tissue survival and repair following acute ischemic damage for a broader population of stroke patients. In this preclinical study, we evaluated whether elezanumab, a human anti-RGMa monoclonal antibody, could improve neuromotor function and modulate neuroinflammatory cell activation following AIS with delayed intervention times up to 24 h using a rabbit embolic permanent middle cerebral artery occlusion model (pMCAO). In two replicate 28-day pMCAO studies, weekly intravenous infusions of elezanumab, over a range of doses and TTIs of 6 and 24 h after stroke, significantly improved neuromotor function in both pMCAO studies when first administered 6 h after stroke. All elezanumab treatment groups, including the 24 h TTI group, had significantly less neuroinflammation as assessed by microglial and astrocyte activation. The novel mechanism of action and potential for expanding TTI in human AIS make elezanumab distinct from current acute reperfusion therapies, and support evaluation in clinical trials of acute CNS damage to determine optimal dose and TTI in humans. A: Ramified/resting astrocytes and microglia in a normal, uninjured rabbit brain. B: Rabbit pMCAO brain illustrating lesion on right side of brain (red), surrounded by penumbra (pink) during acute phase post stroke, with minimal injury to left brain hemisphere. Penumbra characterized by activated astrocytes and microglia (region in crosshair within circle), with upregulation of free and bound RGMa. C: Elezanumab binds to both free and bound RGMa, preventing full activation of astrocytes and microglia. D: Elezanumab is efficacious in rabbit pMCAO with a 4 × larger TTI window vs. tPA (6 vs. 1.5 h, respectively). In human AIS, tPA is approved for a TTI of 3-4.5 h. Elezanumab is currently being evaluated in a clinical Ph2 study of AIS to determine the optimal dose and TTI (NCT04309474).

2.
Alzheimers Dement ; 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820077

RESUMO

INTRODUCTION: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aß) peptides in plasma and the extent to which they improve the prediction of amyloid positivity. METHODS: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aß assays. Statistical tests were performed to determine whether the plasma Aß measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype. RESULTS: The age and APOE genotype model predicted amyloid status with an area under the curve (AUC) of 0.75. Three assays improved AUCs to 0.81, 0.81, and 0.84 (P < .05, uncorrected for multiple comparisons). DISCUSSION: Measurement of Aß in plasma contributes to addressing the amyloid component of the ATN (amyloid/tau/neurodegeneration) framework and could be a first step before or in place of a PET or cerebrospinal fluid screening study. HIGHLIGHTS: The Foundation of the National Institutes of Health Biomarkers Consortium evaluated six plasma amyloid beta (Aß) assays using Alzheimer's Disease Neuroimaging Initiative samples. Three assays improved prediction of amyloid status over age and apolipoprotein E (APOE) genotype. Plasma Aß42/40 predicted amyloid positron emission tomography status better than Aß42 or Aß40 alone.

3.
Neurobiol Aging ; 109: 64-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655982

RESUMO

In Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that in Tau transgenic mice, human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein. The fragmentation pattern is similar across different Tau transgenic models, pathological stages and brain areas. ISF hTau concentration decreases during Tauopathy progression, while its phosphorylation increases. ISF from mice with established Tauopathy induces Tau aggregation in HEK293-Tau biosensor cells. Notably, immunodepletion of ISF phosphorylated Tau, but not Tau fragments, significantly reduces its ability to seed Tau aggregation and only a fraction of Tau, separated by ultracentrifugation, is seeding-competent. These results indicate that ISF seeding competence is driven by a small subset of Tau, which potentially contribute to the propagation of Tau pathology.


Assuntos
Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos Transgênicos , Microdiálise , Fragmentos de Peptídeos/metabolismo , Fosforilação , Agregação Patológica de Proteínas/metabolismo
4.
Neurobiol Dis ; 155: 105385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991647

RESUMO

Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Chlorocebus aethiops , Teste de Esforço/métodos , Humanos , Injeções Espinhais , Masculino , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Primatas , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas/lesões
5.
Acta Neuropathol Commun ; 7(1): 177, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722749

RESUMO

Intraneuronal insoluble inclusions made of Tau protein are neuropathological hallmarks of Alzheimer Disease (AD). Cleavage of Tau by legumain (LGMN) has been proposed to be crucial for aggregation of Tau into fibrils. However, it remains unclear if LGMN-cleaved Tau fragments accumulate in AD Tau inclusions.Using an in vitro enzymatic assay and non-targeted mass spectrometry, we identified four putative LGMN cleavage sites at Tau residues N167-, N255-, N296- and N368. Cleavage at N368 generates variously sized N368-Tau fragments that are aggregation prone in the Thioflavin T assay in vitro. N368-cleaved Tau is not detected in the brain of legumain knockout mice, indicating that LGMN is required for Tau cleavage in the mouse brain in vivo. Using a targeted mass spectrometry method in combination with tissue fractionation and biochemical analysis, we investigated whether N368-cleaved Tau is differentially produced and aggregated in brain of AD patients and control subjects. In brain soluble extracts, despite reduced uncleaved Tau in AD, levels of N368-cleaved Tau are comparable in AD and control hippocampus, suggesting that LGMN-mediated cleavage of Tau is not altered in AD. Consistently, levels of activated, cleaved LGMN are also similar in AD and control brain extracts. To assess the potential accumulation of N368-cleaved Tau in insoluble Tau aggregates, we analyzed sarkosyl-insoluble extracts from AD and control hippocampus. Both N368-cleaved Tau and uncleaved Tau were significantly increased in AD as a consequence of pathological Tau inclusions accumulation. However, the amount of N368-cleaved Tau represented only a very minor component (< 0.1%) of insoluble Tau.Our data indicate that LGMN physiologically cleaves Tau in the mouse and human brain generating N368-cleaved Tau fragments, which remain largely soluble and are present only in low proportion in Tau insoluble aggregates compared to uncleaved Tau. This suggests that LGMN-cleaved Tau has limited role in the progressive accumulation of Tau inclusions in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cisteína Endopeptidases/metabolismo , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas tau/genética
6.
Toxicol Pathol ; 44(2): 259-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839325

RESUMO

Hepcidin was originally detected as a liver peptide with antimicrobial activity and it functions as a central regulator in the systemic iron metabolism. Consequently suppression of hepcidin leads to iron accumulation in the liver. AbbVie developed a monoclonal antibody ([mAb]; repulsive guidance molecule [RGMa/c] mAb) that downregulates hepcidin expression by influencing the RGMc/bone morphogenetic protein (BMP)/neogenin receptor complex and causes iron deposition in the liver. In a dose range finding study with RGMa/c mAb, rats were treated with different dose levels for a total of 4 weekly doses. The results of this morphometric analysis in the liver showed that iron accumulation is not homogenous between liver lobes and the left lateral lobe was the most responsive lobe in the rat. Quantitative hepcidin messenger RNA analysis showed that the left lateral lobe was the most responsive lobe showing hepcidin downregulation with increasing antibody dose. In addition, the morphometric analysis had higher sensitivity than the chemical iron extraction and quantification using a colorimetric assay. In conclusion, the Prussian blue stain in combination with semi-quantitative and quantitative morphometric analysis is the most reliable method to demonstrate iron accumulation in the liver compared to direct measurement of iron in unfixed tissue using a colorimetric assay.


Assuntos
Hepcidinas/metabolismo , Ferro/análise , Ferro/metabolismo , Fígado/química , Fígado/metabolismo , Animais , Anticorpos Monoclonais , Relação Dose-Resposta a Droga , Feminino , Proteínas Ligadas por GPI , Hepcidinas/análise , Hepcidinas/genética , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...