Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(6): 1849-1860, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38347805

RESUMO

Surface enhanced Raman spectroscopy (SERS) is an effective technique for detecting molecules in aqueous solutions due to its insensitivity to water, which makes it especially useful for biological samples. Utilizing SERS in flow can aid in a variety of applications such as metabolomics, pharmaceuticals, and diagnostics. The ability to 3D print complex objects enables rapid dissemination of prototypes. A 3D printed flow cell for sheath flow SERS detection has been developed that can incorporate a variety of planar substrates. The 3D printed flow cell incorporates hydrodynamic focusing, a sheath flow, that confines the analyte near the SERS substrate. Since the SERS signal obtained relies on the interaction between analyte molecules and nanostructures, sheath flow increases the detection efficiency and eliminates many issues associated with SERS detection in solution. This device was optimized by analyzing both molecules and particles with and without using sheath flow for SERS detection. Our results show that the flow rates can be optimized to increase the SERS signal obtained from a variety of analytes, and that the signal was increased when using sheath flow. This 3D printed flow cell offers a straightforward method to disseminate this technology and to facilitate online SERS detection.

2.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 411-432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38382105

RESUMO

Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.

3.
Appl Spectrosc ; 78(3): 268-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112337

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive technique that can assist in trace analysis for biomedical, diagnostic, and environmental applications. However, a major limitation of SERS is surface contamination of the substrates used, which can complicate the spectral reproducibility, limits of detection, and detection of unknown analytes. This is especially prevalent with commercially available substrates as shipping under a controlled and clean environment is difficult. Here we report a method using dilute bleach solutions to remove surface contamination from commercially available substrates consisting of gold-coated nanopillar arrays that maintains functionality. The results show that this method can be used to remove background signals associated with typical surface contamination in commercially available substrates as well as remove thiolated self-assembled monolayers (SAMs). Results indicate the bleach oxidizes the surface contaminants, which can then be easily washed away. Although the metallic surface also becomes oxidized in this process, the surface can be reduced without loss of SERS activity. The SERS intensity of SAMs improved following bleach treatment across all concentrations studied.

4.
Anal Methods ; 14(14): 1387-1395, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35274114

RESUMO

Lentiviruses are commonly used to deliver genetic code into host cells for biomedical applications, such as gene therapy, pharmaceuticals, and vaccine development. Knowing the infectious titer of these virus particles is critical for development in these areas. Current methods of determining viral titer often require cell culture, where a cell is infected and the inserted genetic code is expressed in a known number of cells, which can require days or weeks to prepare and analyze samples. To provide a more rapid method of determining viral titer, the use of surface enhanced Raman spectroscopy (SERS) was explored. SERS provides both chemical and structural information by using plasmonic metallic nanostructures to amplify the Raman signal. Two different lentiviruses, one with a vector encoding a GFP gene and the same virus without the GFP gene included, were analyzed by SERS in viral production media at various concentrations. The SERS response was demonstrated to be sensitive to the incorporation of the GFP gene into the viral vector. Chemometric analysis using multivariate curve resolution (MCR) was able to identify a component in the observed SERS spectra that correlated with the concentration of GFP containing virus particles. Using the MCR model and the SERS response, the viral titer of lentivirus encoding for GFP was determined. The viral titer determined by SERS agreed well with expression of the GFP in infected cells. The SERS response using different metals and excitation wavelengths was also explored. Overall, this work demonstrates the utility of SERS for rapid determination of lentiviral titer.


Assuntos
Nanoestruturas , Análise Espectral Raman , Vetores Genéticos , Lentivirus/genética , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA