Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(10): 6991-7003, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38716702

RESUMO

We report an efficient procedure to carry out palladium-catalyzed Miyaura borylation reactions of (hetero)aromatic halides and triflates in choline chloride (ChCl)-based deep eutectic solvents (DESs). The procedure employs bis(pinacolato)diboron as a boron source and a catalyst prepared in situ from readily available Pd2(dba)3 and the phosphine ligand XPhos. Reactions proceed well in different ChCl-based DESs, among which the best results were provided by environmentally friendly and biodegradable mixtures with glycerol and glucose. The reaction tolerates both EDG and EWG substituents on the substrates and can be run on different halides (chloride, bromide, iodide) and pseudohalides (triflate). Furthermore, for several substrates, the catalyst loading can be reduced to 1 mol % Pd (0.5% mol Pd2(dba)3) without compromising the reaction yield. Moreover, we show that the Miyaura borylation protocol in DES can be combined with a subsequent Suzuki-Miyaura cross-coupling reaction in a one-pot procedure, allowing access to various biaryl products and demonstrating its synthetic utility by preparing the precursors of two compounds with reported applications in the photovoltaics sector. Finally, two green metrics (E-factor and EcoScale) of the new one-pot procedure in DES were calculated and compared with literature values to assess the potential advantages in terms of waste reduction, safety, and energy consumption.

2.
ACS Appl Energy Mater ; 6(9): 4862-4880, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37181248

RESUMO

Luminescent solar concentrators (LSCs) are a class of optical devices able to harvest, downshift, and concentrate sunlight, thanks to the presence of emitting materials embedded in a polymer matrix. Use of LSCs in combination with silicon-based photovoltaic (PV) devices has been proposed as a viable strategy to enhance their ability to harvest diffuse light and facilitate their integration in the built environment. LSC performances can be improved by employing organic fluorophores with strong light absorption in the center of the solar spectrum and intense, red-shifted emission. In this work, we present the design, synthesis, characterization, and application in LSCs of a series of orange/red organic emitters featuring a benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide central core as an acceptor (A) unit. The latter was connected to different donor (D) and acceptor (A') moieties by means of Pd-catalyzed direct arylation reactions, yielding compounds with either symmetric (D-A-D) or non-symmetric (D-A-A') structures. We found that upon light absorption, the compounds attained excited states with a strong intramolecular charge-transfer character, whose evolution was greatly influenced by the nature of the substituents. In general, symmetric structures showed better photophysical properties for the application in LSCs than their non-symmetric counterparts, and using a donor group of moderate strength such as triphenylamine was found preferable. The best LSC built with these compounds presented photonic (external quantum efficiency of 8.4 ± 0.1%) and PV (device efficiency of 0.94 ± 0.06%) performances close to the state-of-the-art, coupled with a sufficient stability in accelerated aging tests.

3.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576899

RESUMO

Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor-acceptor-donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.

4.
Molecules ; 25(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722406

RESUMO

A new series of symmetrical organic dyes containing an indigo central core decorated with different electron donor groups have been prepared, starting from Tyrian Purple and using the Pd-catalyzed Stille-Migita coupling process. The effect of substituents on the spectroscopic properties of the dyes has been investigated theoretically and experimentally. In general, all dyes presented intense light absorption bands, both in the blue and red regions of the visible spectrum, conferring them a bright green color in solution. Using the same approach, an asymmetrically substituted D-A-π-A green dye, bearing a triarylamine electron donor and the cyanoacrylate acceptor/anchoring group, has been synthesized for the first time and fully characterized, confirming that spectroscopic and electrochemical properties are consistent with a possible application in dye-sensitized solar cells (DSSC).


Assuntos
Aminas/química , Corantes/química , Índigo Carmim/química , Energia Solar , Cor , Corantes/síntese química , Fontes de Energia Elétrica , Índigo Carmim/síntese química , Indóis/química , Modelos Moleculares , Análise Espectral
5.
Front Chem ; 8: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296679

RESUMO

New generation photovoltaic devices have attracted much attention in the last decades since they can be efficiently manufactured employing abundant raw materials and with less-energy intensive processes. In this context, the use of powerful environmental assessment is pivotal to support the fine-tuning of solar cells fabrication and hit the target of manufacturing effective sustainable technological devices. In this work, a mass-based green metrics and life cycle assessment combined approach is applied to analyze the environmental performances of an innovative synthetic protocol for the preparation of organic dye TTZ5, which has been successfully proposed as sensitizer for manufacturing dye sensitized solar cells. The new synthetic strategy, which is based on the C-H activation process, has been compared with the previously reported synthesis employing classic Suzuki-Miyaura cross-coupling chemistry. Results highlight the contribution of direct energy consumption and purification operations in organic syntheses at lab scale. Furthermore, they demonstrate the usefulness of the environmental multifaceted analytic tool and the power of life cycle assessment to overcome the intrinsic less comprehensive nature of green metrics for the evaluation of organic synthetic protocols.

6.
ACS Omega ; 4(4): 7614-7627, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459854

RESUMO

The design, synthesis, and characterization of a new class of blue-colored thiophene-substituted Pechmann dyes are reported. Due to a distinguishing blue coloration and the capability to absorb light in one of the most photon-dense regions of the solar spectrum, such compounds are of great interest for application as photoactive materials in organic optoelectronics, in particular, in dye-sensitized solar cells. To achieve fine tuning of the optical and electrochemical properties, the electron-poor thiophene-bis-lactone moiety has been decorated with donor (D) and acceptor groups (A), targeting fully conjugated D-A-π-A structures. The designed structures have been investigated by means of DFT and time-dependent DFT calculations, and the most promising dyes have been synthesized. These molecules represent the very first preparation of unsymmetrical Pechmann derivatives. Optical and electrochemical properties of the new dyes have been studied by cyclic voltammetry and UV-vis and fluorescence spectroscopy. In two cases, test cells were built proving that a photocurrent can indeed be generated when using electrolytes especially formulated for narrow-band-gap dyes, although with a very low efficiency.

7.
ChemSusChem ; 11(4): 793-805, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29227040

RESUMO

Donor-acceptor dyes are a well-established class of photosensitizers, used to enhance visible-light harvesting in solar cells and in direct photocatalytic reactions, such as H2 production by photoreforming of sacrificial electron donors (SEDs). Amines-typically triethanolamine (TEOA)-are commonly employed as SEDs in such reactions. Dye-sensitized photoreforming of more sustainable, biomass-derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor-acceptor dyes were used as sensitizers in H2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best-performing sensitizers were the ones featuring a thiazolo[5,4-d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers.


Assuntos
Aminas/química , Corantes/química , Química Verde , Hidrogênio/química , Elétrons , Etanol , Etanolaminas , Interações Hidrofóbicas e Hidrofílicas , Fármacos Fotossensibilizantes/química
8.
Phys Chem Chem Phys ; 19(23): 15310-15323, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28569917

RESUMO

Dye-sensitized solar cells (DSSCs) have attracted significant interest in the last few years as effective low-cost devices for solar energy conversion. We have analyzed the excited state dynamics of several organic dyes bearing both cyanoacrylic acid and siloxane anchoring groups. The spectroscopic properties of the dyes have been studied both in solution and when adsorbed on a TiO2 film using stationary and time-resolved techniques, probing the sub-picosecond to nanosecond time interval. The comparison between the spectra registered in solution and on the solid substrate evidences different pathways for energy and electron relaxation. The transient spectra of the TiO2-adsorbed dyes show the appearance of a long wavelength excited state absorption band, attributed to the cationic dye species, which is absent in the spectra measured in solution. Furthermore, the kinetic traces of the samples adsorbed on the TiO2 film show a long decay component not present in solution which constitutes indirect evidence of electron transfer between the dye and the semiconductor. The interpretation of the experimental results has been supported by theoretical DFT calculations of the excited state energies and by the analysis of molecular orbitals of the analyzed dye molecules.

9.
Chimia (Aarau) ; 71(9): 586-591, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30188289

RESUMO

The cross-coupling reaction of organic electrophiles with organostannanes, traditionally known as the Stille reaction, has found renewed interest in the preparation of new organic materials such as conjugated polymers, organic semiconductors and photoactive molecules for use in organic photovoltaics. Moreover, a very recent field in which the Stille reaction has found successful application is that of the design and synthesis of new photosensitizers for dye-sensitized solar cells (DSSCs). DSSCs are considered a promising alternative for energy production from renewable sources. In such devices light harvesting is carried out by a dye which is generally a highly conjugated molecule. Due to the mild operating conditions and the high functional-group compatibility, the Stille reaction proved to be a powerful tool not only for the preparation of photosensitizers, but also to plan their chemical elaboration in order to tune and optimize their photophysical, electrochemical and photovoltaic properties. In this microreview some recent examples of the Stille reaction in the synthesis of organic dyes for DSSC are reported.

10.
Chimia (Aarau) ; 71(9): 547A, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30188299
11.
Org Lett ; 17(3): 398-401, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25629303

RESUMO

The preparation of 3-substituted tetrahydropyrazinoisoquinolines using the tributyltin hydride mediated intramolecular radical cyclization of suitably protected 2-substituted 3,4-dihydropyrazines is reported. The compounds are obtained as single enantiomers, as the relative configuration of the new generated stereogenic center is driven by the stereochemistry of the 2-substituted carbon in the starting materials, which is in turn derived from naturally occurring amino acids.


Assuntos
Compostos Heterocíclicos com 3 Anéis/síntese química , Isoquinolinas/síntese química , Pirazinas/química , Pirazinas/síntese química , Aminoácidos/química , Catálise , Ciclização , Compostos Heterocíclicos com 3 Anéis/química , Isoquinolinas/química , Estrutura Molecular , Estereoisomerismo
12.
Chem Commun (Camb) ; 50(90): 13952-5, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25264863

RESUMO

Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 µm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.

13.
Curr Top Med Chem ; 14(10): 1308-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24758427

RESUMO

Many pharmaceutical agents include piperazines or oxopiperazines as part of their core structures. The presence of substituents on these heterocycles has a significant influence on the biological activity, thus the search for efficient routes to control the substitution at different ring positions might have a crucial impact, especially to promote the use of such scaffolds in SAR studies. Many research groups have been engaged in the stereoselective synthesis of polysubstituted piperazines and oxopiperazines and in the majority of cases the stereochemistry of the final compounds is dependent on the starting material configuration. In the present minireview we have summarized some of the most significant approaches towards the stereoselective synthesis and functionalization of substituted piperazines and oxopiperazines, with a particular focus on our own contributions mainly based on readily available natural amino-acids as "chiral pool" starting materials. An efficient and scalable route to orthogonally protected 2-oxopiperazines has been developed using the corresponding diamines as key intermediates: diastereoselective elaboration of the resulting heterocycles was possible by metalation and reaction with electrophiles, leading to anti 3,5-disubstituted-oxopiperazines, in agreement with the model for a conventional 1,3-asymmetric induction. Both piperazines and tetrahydropyrazines could be prepared via LiAlH4-mediated reduction of 2-oxopiperazines, depending on reaction conditions. Finally, the diastereoselective synthesis of cyclopropane- containing analogs 2,5-diaza-bicyclo[4.1.0]heptanes was demonstrated by application of the classic Simmons-Smith reaction on enantiomerically enriched dihydro-2H-pyrazines.


Assuntos
Piperazinas/química , Piperazinas/síntese química , Química Farmacêutica , Estrutura Molecular , Estereoisomerismo
14.
Chemphyschem ; 15(6): 1116-25, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24402779

RESUMO

We report a joint experimental and computational study into the spectroscopic properties of a prototypical D5 organic dye, both in solution and adsorbed on a TiO2 surface, with the aim of modeling and quantifying the UV/Vis spectral shifts that occur in the different explored environments. Going from the dye in solution to dye-sensitized TiO2, various factors may shift the position of the UV/Vis absorption maximum, both towards longer and shorter wavelengths. Here we have focused on the effect of dye aggregation on TiO2, surface protonation, and solvent effects. The D5 dye forms stable aggregates on the TiO2 surface that cause spectral blueshifts. We used different sensitization conditions to vary the dye loading and thus the extent of dye aggregation. For each sensitization condition, we explored protonated and native TiO2 films. Computational modeling of different dimeric aggregates with increasing intermolecular interactions and simulation of the associated optical responses also confirm the observed spectral blueshifts. Our results show that both the presence of surface protons and solvent stabilize the excited state of the adsorbed dye molecules, which causes a marked redshift in the absorption maximum and thus moves in the opposite direction to the shift due to the increase in the surface coverage.

15.
J Chem Theory Comput ; 10(9): 3925-33, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26588536

RESUMO

The ability of Time-Dependent Density Functional Theory (TD-DFT) to provide excited state geometries and reproduce emission energies of organic D-π-A dyes designed for DSSC applications is evaluated. The performance of six functionals (CAM-B3LYP, MPW1K, ωB97X-D, LC-BLYP, LC-ωPBE, and M06-HF) in combination with three basis sets (cc-pVDZ, 6-31+G(d,p), and 6-311+G(2d,p)) has been analyzed. Solvent effects have been taken into account by means of a Polarizable Continuum Model in both LR and SS formalisms. Our LR-PCM/TD-DFT results show that accurate emission energies are obtained only when solvent effects are included in the computation of excited state geometries and when a range separated hybrid functional is used. Vertical emission energies are reproduced with a mean absolute error of at most 0.2 eV. The accuracy is further improved using the SS-PCM formalism.

16.
ACS Med Chem Lett ; 4(6): 565-9, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900710

RESUMO

A new class of potent matrix metalloproteinase (MMP) inhibitors designed by structure-based optimization of the well-known arylsulfonamide scaffold is presented. Molecules show an ethylene linker connecting the sulfonamide group with the P1' aromatic portion and a d-proline residue bearing the zinc-binding group. The affinity improvement provided by these modifications led us to discover a nanomolar MMP inhibitor bearing a carboxylate moiety as zinc-binding group, which might be a promising lead molecule. Notably, a significant selectivity for MMP-8, MMP-12, and MMP-13 was observed with respect to MMP-1 and MMP-7.

17.
J Org Chem ; 76(18): 7415-22, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21793521

RESUMO

An efficient synthesis of various protected syn-ß-sulfenyl amides is described. These are prepared from the corresponding enantiopure amino allylsilanes which are in turn obtained from naturally occurring amino acids. The key step for introduction of the sulfur substituent is a diastereoselective electrophilic sulfodesilylation which is carried out with phthalimidesulfenyl chloride. The resulting homochiral ß-phthalimidesulfenyl amines with an allylic sulforated stereogenic center are useful building blocks, as they represent a starting point for subsequent functional manipulations.

18.
J Am Chem Soc ; 133(16): 6472-80, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21466212

RESUMO

A multinuclear NMR study shows that the deprotonation of diphenylphosphine-borane by n-BuLi in THF leads to a disolvated lithium phosphido-borane Ph(2)P(BH(3))Li of which Li(+) is connected to the hydrides on the boron and two THF molecules rather than to the phosphorus. This entity behaves as both a phosphination and a reducing agent, depending on the kinetic or thermodynamic control imposed to the reaction medium. Density functional theory computations show that H(2)P(BH(3))Li exhibits a ditopic character (the lithium cation can be in the vicinity of the hydride or of the phosphorus). It explains its dual reactivity (H- or P-addition), both routes going through somewhat similar six-membered transition states with low activation barriers.

19.
Gastroenterology ; 140(2): 709-720.e9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21044629

RESUMO

BACKGROUND & AIMS: Gemcitabine is the standard of care for metastatic and nonresectable pancreatic tumors. Phase II and III trials have not demonstrated efficacy of recently developed reagents, compared with gemcitabine alone; new chemotherapic agents are needed. Ninety percent of pancreatic tumors have telomerase activity, and expression correlates with tumor stage. We developed a thymidine analogue prodrug, acycloguanosyl 5'-thymidyltriphosphate (ACV-TP-T), that is metabolized by telomerase and releases the active form of acyclovir. We investigated the antitumor efficacy of ACV-TP-T in vitro and in vivo. METHODS: We evaluated proliferation and apoptosis of human pancreatic cancer cells (PANC-1, MiaPaca2, BxPc3, PL45, and Su.86.86) incubated with ACV-TP-T. The presence of ACV-TP-T and its metabolite inside the cells were analyzed by mass spectrometry. In vivo efficacy was evaluated in nude mice carrying PANC-1 or MiaPaca2 pancreatic xenograft tumors. RESULTS: The prodrug of ACV-TP-T was actively metabolized inside pancreatic cancer cells into the activated form of acyclovir; proliferation was reduced, apoptosis was increased, and the cell cycle was altered in pancreatic cancer incubated with ACV-TP-T, compared with controls. Administration of ACV-TP-T to mice reduced growth, increased apoptosis, and reduced proliferation and vascularization of pancreatic xenograft tumors. CONCLUSIONS: ACV-TP-T, a thymidine analogue that is metabolized by telomerase and releases the active form of acyclovir, reduces proliferation and induces apoptosis of human pancreatic cancer cell lines in vitro and pancreatic xenograft tumors in mice.


Assuntos
Adenocarcinoma/tratamento farmacológico , Guanosina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Telomerase/metabolismo , Timidina/metabolismo , Nucleotídeos de Timina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Guanosina/análise , Guanosina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Nucleotídeos de Timina/análise , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Amino Acids ; 39(1): 175-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19941016

RESUMO

A simple approach to a new family of enantiomerically enriched polyunsaturated t-Boc-protected-delta-amino esters is described, via microwave promoted Stille coupling of (Z)-methyl-2-bromobutenoate with stannylated allylamines. The reaction conditions are mild and selective and disclose a simple way to 1-substituted butenoates of defined geometry.


Assuntos
Aminoácidos/síntese química , Ésteres/síntese química , Micro-Ondas , Aminoácidos/química , Ésteres/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA