Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986897

RESUMO

Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.

2.
3 Biotech ; 12(10): 275, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36110567

RESUMO

Jatropha, a popular biodiesel crop, suffers severe losses due to Jatropha leaf curl Gujarat virus (JLCuGV) infection in Gujarat (India). Metabolite profiling can help to understand the plant's innate immune response to geminivirus infection. Our study aims to compare metabolic profiles of an infected and healthy plant to unravel the changes in biochemical pathways on geminivirus infection in Jatropha. Gas chromatography-mass spectrometry (GC-MS) analysis was performed in healthy and infected tissue of Jatropha field plants which were identified to be infected with geminivirus. GC-MS analysis revealed that the metabolites like sugars, polyols, carboxylic acids, fatty acids, polyphenols, and amino acids were regulated on JLCuGV infection. The sugars (glucose, sucrose, and fructose) increased, while carboxylic acids (malic acid, citric acid and quinic acid) and polyols (galactinol, butanetriol, triethylene glycol, myo-inositol, erythritol) decreased remarkably in infected Jatropha tissue. All these metabolic variations indicated that sugar metabolism and tricarboxylic acid (TCA) cycle pathways are regulated as a defense response and a disease development response to geminivirus infection in Jatropha.

3.
Sci Rep ; 11(1): 890, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441589

RESUMO

The leaf curl disease of Jatropha caused by geminiviruses results in heavy economic losses. In the present study, we report the identification of a new strain of a Jatropha leaf curl Gujarat virus (JLCuGV), which encodes six ORFs with each one having RNA silencing suppressor activity. Therefore, three artificial microRNAs (amiRNAs; C1/C4, C2/C3 and V1/V2) were designed employing overlapping regions, each targeting two ORFs of JLCuGV genomic DNA and transformed in tobacco. The C1/C4 and C2/C3 amiRNA transgenics were resistant while V1/V2 amiRNA transgenics were tolerant against JLCuGV. The relative level of amiRNA inversely related to viral load indicating a correlation with disease resistance. The assessment of photosynthetic parameters suggests that the transgenics perform significantly better in response to JLCuGV infiltration as compared to wild type (WT). The metabolite contents were not altered remarkably in amiRNA transgenics, but sugar metabolism and tricarboxylic acid (TCA) cycle showed noticeable changes in WT on virus infiltration. The overall higher methylation and demethylation observed in amiRNA transgenics correlated with decreased JLCuGV accumulation. This study demonstrates that amiRNA transgenics showed enhanced resistance to JLCuGV while efficiently maintaining normalcy in their photosynthesis and metabolic pathways as well as homeostasis in the methylation patterns.


Assuntos
Begomovirus/genética , Resistência à Doença/genética , Nicotiana/genética , Begomovirus/patogenicidade , Geminiviridae/genética , Geminiviridae/patogenicidade , Jatropha/genética , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia , RNA Viral/genética , Carga Viral
4.
Plant Physiol Biochem ; 151: 689-704, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32353675

RESUMO

The maintenance of ROS homeostasis, membrane biogenesis and recycling of molecules are common stress responses involving specific and complex regulatory network. Ubiquitination is an important and common mechanism which facilitates environmental adaptation in eukaryotes. In the present study we have cloned the AlRabring7, an E3-Ub-ligase, previously identified as AlRab7 interacting partner. The role of AlRabring7 for ubiquitinating AlRab7 and facilitating stress tolerance is analysed. The AlRabring7, with an open-reading frame of 702 bp encodes a protein of 233 amino acids, with RING-HC domain of 40 amino acids. In silico analysis shows that AlRabring7 is a C3HC4-type RING E3 Ub ligase. The protein - protein docking show interaction dynamics between AlRab7-AlRabring7-Ubiquitin proteins. The AlRab7 and AlRabring7 transcript showed up-regulation in response to different salts i.e: NaCl, KCl, CaCl2, NaCl + KCl, NaCl + CaCl2, imposing ionic as well as hyperosmotic stress, and also with oxidative stress by H2O2 treatment. Interestingly, the AlRabring7 showed early transcript expression with maximum expression in shoots on combinatorial stresses. The AlRab7 showed delayed and maximum expression with NaCl + CaCl2 stress treatment. The AlRab7 complements yeast ypt7Δ mutants and restored the fragmented vacuole. The in vitro ubiquitination assay revealed that AlRabring7 function as E3 ubiquitin ligase and mediates AlRab7 ubiquitination. Overexpression of AlRab7 and AlRabring7 independently and when co-transformed enhanced the growth of yeast cells during stress conditions. Further, the bimolecular fluorescence complementation assay shows the in planta interaction of the two proteins. Our results suggest that AlRab7 and AlRabring7 confers enhanced stress tolerance in yeast.


Assuntos
Estresse Oxidativo , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Ubiquitinação , Peróxido de Hidrogênio , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
5.
Sci Rep ; 9(1): 19617, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31871315

RESUMO

Salinity is one of the major factors negatively affecting crop productivity. WRKY transcription factors (TFs) are involved in salicylic acid (SA) mediated cellular reactive oxygen species homeostasis in response to different stresses, including salinity. Therefore, the effect of NaCl, NaCl + SA and SA treatments on different photosynthesis-related parameters and wax metabolites were studied in the Jatropha curcas WRKY (JcWRKY) overexpressing tobacco lines. JcWRKY transgenics showed improved photosynthesis rate, stomatal conductance, intercellular CO2 concentration/ambient CO2 concentration ratio (Ci/Ca ratio), electron transport rate (ETR), photosynthesis efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of PSII electron transport (ΦPSII) in response to salinity stress, while exogenous SA application had subtle effect on these parameters. Alkane, the major constituent of wax showed maximum accumulation in transgenics exposed to NaCl. Other wax components like fatty alcohol, carboxylic acid and fatty acid were also higher in transgenics with NaCl + SA and SA treatments. Interestingly, the transgenics showed a higher number of open stomata in treated plants as compared to wild type (WT), indicating less perception of stress by the transgenics. Improved salinity tolerance in JcWRKY overexpressing tobacco transgenics is associated with photosynthetic efficiency and wax accumulation, mediated by efficient SA signalling. The transgenics showed differential regulation of genes related to photosynthesis (NtCab40, NtLhcb5 and NtRca1), wax accumulation (NtWIN1) and stomatal regulation (NtMUTE, NtMYB-like, NtNCED3-2 and NtPIF3). The present study indicates that JcWRKY is a potential TF facilitating improved photosynthesis with the wax metabolic co-ordination in transgenics during stress.


Assuntos
Nicotiana , Fotossíntese , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Salino , Fatores de Transcrição , Ceras/metabolismo , Jatropha/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
6.
Ecotoxicol Environ Saf ; 182: 109450, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31349104

RESUMO

The major sources for release of hydrocarbons into the environment include the effluents generated from chemical processing industries and ports. The introduction of such hazardous compounds into natural water bodies creates considerable disturbances in aquatic life and causes a threat to humans. Thus, it is essential to detect and quantify pollutants at various stages of the wastewater generation and treatment before they reach natural aquatic environments and contaminate them. This study reports the development of "biosensing strains" by cloning hydrocarbon recognizing promoter-operator and a reporter gene in bacterial strains for sensing the presence of pollutants at their lowest possible concentration. So far, various biosensing strains have been constructed with a fused promoter-operator region of the hydrocarbon degrading operons, but most of them use luxAB as a reporter gene. A novel approach in the present study aimed at constructing strains harboring two different fluorescent protein (FP)-based reporter genes for the quantification of multiple pollutants at a time. Two vectors were designed with a fusion of tbuT-gfp and phnR-cfp for the quantification of mono- and poly-aromatic hydrocarbons, respectively. The designed vectors were transformed into E. coli DH5α, and these strains were designated as E. coli DH5α 2296-gfp (containing pPROBE-Tbut-RBS-gfp-npt) and E. coli DH5α 2301-cfp (containing pPROBE-phn-RBS-cfp-npt). Both the developed recombinant strains were capable of successfully detecting mono- and poly-aromatic hydrocarbons in the range of 1-100 µM. The sensing capacity of recombinant strains was successfully validated with actual wastewater samples against available physico-chemical analytical techniques. The development of such recombinant microbial strains indicates the future for online contaminant detection, treatment quality monitoring and protection of aquatic flora and fauna.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/genética , Hidrocarbonetos Aromáticos/análise , Poluentes Químicos da Água/análise , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Regiões Promotoras Genéticas , Águas Residuárias/química , Purificação da Água
7.
Mar Biotechnol (NY) ; 19(3): 207-218, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28527016

RESUMO

Plants are the primary producers of food for human being. Their intracellular environment alternation is influenced by abiotic stress factors such as drought, heat and soil salinity. Aeluropus lagopoides is a strong halophyte that grows with ease under high saline muddy banks of creeks of Gujarat, India. To study the response of salinity on metabolite changes in Aeluropus, three treatments, i.e. control, salinity and recovery, were selected for both shoot and root tissue. The cytosolic metabolite state was analysed by molecular chemical derivatization gas chromatography mass profiling. During saline treatment, significant increase of compatible solutes in shoot and root tissue was observed as compared to control. Subsequently, metabolic concentration decreased under recovery conditions. The metabolites like amino acids, organic acids and polyols were significantly detected in both shoot and root of Aeluropus under salinity. The metabolites like proline, aspartic acid, glycine, succinic acid and glycolic acid were significantly upregulated under stress. The salicylic acid was found to play a role in maintaining the polyols level by its down-regulation during salinity. The principle component analysis of all detected metabolites in both shoot and root showed that metabolites expressed under salinity (component 1) were highly variable, while metabolites expressed under recovery (component 2) were comparatively less variable as compared to control. The evolved intracellular compartmentalization of amino acids, organic acids and polyols in A. lagopoides can be a hallmark to sustaining at high salinity stress.


Assuntos
Metaboloma , Poaceae/metabolismo , Salinidade , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poaceae/fisiologia , Análise de Componente Principal , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico
8.
Front Plant Sci ; 7: 217, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973666

RESUMO

Plants in ecosystems are simultaneously exposed to abiotic and biotic stresses, which restrict plant growth and development. The complex responses to these stresses are largely regulated by plant hormones, which in turn, orchestrate the different biochemical and molecular pathways to maneuver stress tolerance. The PR-10 protein family is reported to be involved in defense regulation, stress response and plant growth and development. The JcPR-10a overexpression resulted in increased number of shoot buds in tobacco (Nicotiana tabacum), which could be due to high cytokinin to auxin ratio in the transgenics. The docking analysis shows the binding of three BAP molecules at the active sites of JcPR-10a protein. JcPR-10a transgenics showed enhanced salt tolerance, as was evident by increased germination rate, shoot and root length, relative water content, proline, soluble sugar and amino acid content under salinity. Interestingly, the transgenics also showed enhanced endogenous cytokinin level as compared to WT, which, further increased with salinity. Exposure of gradual salinity resulted in increased stomatal conductance, water use efficiency, photosynthesis rate and reduced transpiration rate. Furthermore, the transgenics also showed enhanced resistance against Macrophomina fungus. Thus, JcPR-10a might be working in co-ordination with cytokinin signaling in mitigating the stress induced damage by regulating different stress signaling pathways, leading to enhanced stress tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...