Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1237162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780706

RESUMO

Background: Quantifying gait using inertial measurement units has gained increasing interest in recent years. Highly degraded gaits, especially in neurological impaired patients, challenge gait detection algorithms and require specific segmentation and analysis tools. Thus, the outcomes of these devices must be rigorously tested for both robustness and relevancy in order to recommend their routine use. In this study, we propose a multidimensional score to quantify and visualize gait, which can be used in neurological routine follow-up. We assessed the reliability and clinical coherence of this method in a group of severely disabled patients with progressive multiple sclerosis (pMS), who display highly degraded gait patterns, as well as in an age-matched healthy subjects (HS) group. Methods: Twenty-two participants with pMS and nineteen HS were included in this 18-month longitudinal follow-up study. During the follow-up period, all participants completed a 10-meter walk test with a U-turn and back, twice at M0, M6, M12, and M18. Average speed and seven clinical criteria (sturdiness, springiness, steadiness, stability, smoothness, synchronization, and symmetry) were evaluated using 17 gait parameters selected from the literature. The variation of these parameters from HS values was combined to generate a multidimensional visual tool, referred to as a semiogram. Results: For both cohorts, all criteria showed moderate to very high test-retest reliability for intra-session measurements. Inter-session quantification was also moderate to highly reliable for all criteria except smoothness, which was not reliable for HS participants. All partial scores, except for the stability score, differed between the two populations. All partial scores were correlated with an objective but not subjective quantification of gait severity in the pMS population. A deficit in the pyramidal tract was associated with altered scores in all criteria, whereas deficits in cerebellar, sensitive, bulbar, and cognitive deficits were associated with decreased scores in only a subset of gait criteria. Conclusions: The proposed multidimensional gait quantification represents an innovative approach to monitoring gait disorders. It provides a reliable and informative biomarker for assessing the severity of gait impairments in individuals with pMS. Additionally, it holds the potential for discriminating between various underlying causes of gait alterations in pMS.

3.
J Neurol ; 270(2): 618-631, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35817988

RESUMO

Nowadays, it becomes of paramount societal importance to support many frail-prone groups in our society (elderly, patients with neurodegenerative diseases, etc.) to remain socially and physically active, maintain their quality of life, and avoid their loss of autonomy. Once older people enter the prefrail stage, they are already likely to experience falls whose consequences may accelerate the deterioration of their quality of life (injuries, fear of falling, reduction of physical activity). In that context, detecting frailty and high risk of fall at an early stage is the first line of defense against the detrimental consequences of fall. The second line of defense would be to develop original protocols to detect future fallers before any fall occur. This paper briefly summarizes the current advancements and perspectives that may arise from the combination of affordable and easy-to-use non-wearable systems (force platforms, 3D tracking motion systems), wearable systems (accelerometers, gyroscopes, inertial measurement units-IMUs) with appropriate machine learning analytics, as well as the efforts to address these challenges.


Assuntos
Fragilidade , Qualidade de Vida , Humanos , Idoso , Medo , Aprendizado de Máquina
4.
Front Neurol ; 13: 1042667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438953

RESUMO

Introduction: The aim of this study was to realize a systematic review of the different ways, both clinical and instrumental, used to evaluate the effects of the surgical correction of an equinovarus foot (EVF) deformity in post-stroke patients. Methods: A systematic search of full-length articles published from 1965 to June 2021 was performed in PubMed, Embase, CINAHL, Cochrane, and CIRRIE. The identified studies were analyzed to determine and to evaluate the outcomes, the clinical criteria, and the ways used to analyze the impact of surgery on gait pattern, instrumental, or not. Results: A total of 33 studies were included. The lack of methodological quality of the studies and their heterogeneity did not allow for a valid meta-analysis. In all, 17 of the 33 studies involved exclusively stroke patients. Ten of the 33 studies (30%) evaluated only neurotomies, one study (3%) evaluated only tendon lengthening procedures, 19 studies (58%) evaluated tendon transfer procedures, and only two studies (6%) evaluated the combination of tendon and neurological procedures. Instrumental gait analysis was performed in only 11 studies (33%), and only six studies (18%) combined it with clinical and functional analyses. Clinical results show that surgical procedures are safe and effective. A wide variety of different scales have been used, most of which have already been validated in other indications. Discussion: Neuro-orthopedic surgery for post-stroke EVF is becoming better defined. However, the method of outcome assessment is not yet well established. The complexity in the evaluation of the gait of patients with EVF, and therefore the analysis of the effectiveness of the surgical management performed, requires the integration of a patient-centered functional dimension, and a reliable and reproducible quantified gait analysis, which is routinely usable clinically if possible.

5.
PLoS One ; 17(5): e0268475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35560328

RESUMO

In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.


Assuntos
Esclerose Múltipla , Fenômenos Biomecânicos , Análise de Dados , Marcha/fisiologia , Humanos , Extremidade Inferior
6.
Aging Med (Milton) ; 3(3): 188-194, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33103039

RESUMO

The increasing number of frail elderly people in our aging society is becoming problematic: about 11% of community-dwelling older persons are frail and another 42% are pre-frail. Consequently, a major challenge in the coming years will be to test people over the age of 60 years to detect pre-frailty at the earliest stage and to return them to robustness using the targeted interventions that are becoming increasingly available. This challenge requires individual longitudinal monitoring (ILM) or follow-up of community-dwelling older persons using quantitative approaches. This paper briefly describes an effort to tackle this challenge. Extending the detection of the pre-frail stages to other population groups is also suggested. Appropriate algorithms have been used to begin the tracing of faint physiological signals in order to detect transitions from robustness to pre-frailty states and from pre-frailty to frailty states. It is hoped that these studies will allow older adults to receive preventive treatment at the correct institutions and by the appropriate professionals as early as possible, which will prevent loss of autonomy. Altogether, ILM is conceived as an emerging property of databases ("digital twins") and not the reverse. Furthermore, ILM should facilitate a coordinated set of actions by the caregivers, which is a complex challenge in itself. This approach should be gradually extended to all ages, because frailty has no age, as is testified by overwork, burnout, and post-traumatic syndrome.

7.
Front Neurol ; 11: 261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373047

RESUMO

Background: Objective gait assessment is key for the follow-up of patients with progressive multiple sclerosis (pMS). Inertial measurement units (IMUs) provide reliable and yet easy quantitative gait assessment in routine clinical settings. However, to the best of our knowledge, no automated step-detection algorithm performs well in detecting severely altered pMS gait. Method: This article elaborates on a step-detection method based on personalized templates tested against a gold standard. Twenty-two individuals with pMS and 10 young healthy subjects (HSs) were instructed to walk on an electronic walkway wearing synchronized IMUs. Templates were derived from the IMU signals by using Initial and Final Contact times given by the walkway. These were used to detect steps from other gait trials of the same individual (intra-individual template-based detection, IITD) or another participant from the same group (pMS or HS) (intra-group template-based detection, IGTD). All participants were seen twice with a 6-month interval, with two measurements performed at each visit. Performance and accuracy metrics were computed, along with a similarity index (SId), which was computed as the mean distance between detected steps and their respective closest template. Results: For HS participants, both the IITD and the IGTD algorithms had precision and recall of 1.00 for detecting steps. For pMS participants, precision and recall ranged from 0.94 to 1.00 for IITD and 0.85 to 0.95 for IGTD depending on the level of disability. The SId was correlated with performance and the accuracy of the result. An SId threshold of 0.957 (IITD) and 0.963 (IGTD) could rule out decreased performance (F-measure ≤ 0.95), with negative predictive values of 0.99 and 0.96 with the IITD and IGTD algorithms. Also, the SId computed with the IITD and IGTD algorithms could distinguish individuals showing changes at 6-month follow-up. Conclusion: This personalized step-detection method has high performance for detecting steps in pMS individuals with severely altered gait. The algorithm can be self-evaluating with the SI, which gives a measure of the confidence the clinician can have in the detection. What is more, the SId can be used as a biomarker of change in disease severity occurring between the two measurement times.

8.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235667

RESUMO

The automatic detection of gait events (i.e., Initial Contact (IC) and Final Contact (FC)) is crucial for the characterisation of gait from Inertial Measurements Units. In this article, we present a method for detecting steps (i.e., IC and FC) from signals of gait sequences of individuals recorded with a gyrometer. The proposed approach combines the use of a dictionary of templates and a Dynamic Time Warping (DTW) measure of fit to retrieve these templates into input signals. Several strategies for choosing and learning the adequate templates from annotated data are also described. The method is tested on thirteen healthy subjects and compared to gold standard. Depending of the template choice, the proposed algorithm achieves average errors from 0.01 to 0.03 s for the detection of IC, FC and step duration. Results demonstrate that the use of DTW allows achieving these performances with only one single template. DTW is a convenient tool to perform pattern recognition on gait gyrometer signals. This study paves the way for new step detection methods: it shows that using one single template associated with non-linear deformations may be sufficient to model the gait of healthy subjects.


Assuntos
Marcha/fisiologia , Locomoção/fisiologia , Adulto , Algoritmos , Feminino , Humanos , Masculino , Adulto Jovem
9.
Sensors (Basel) ; 19(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336957

RESUMO

Gait assessment and quantification have received an increased interest in recent years. Embedded technologies and low-cost sensors can be used for the longitudinal follow-up of various populations (neurological diseases, elderly, etc.). However, the comparison of two gait trials remains a tricky question as standard gait features may prove to be insufficient in some cases. This article describes a new algorithm for comparing two gait trials recorded with inertial measurement units (IMUs). This algorithm uses a library of step templates extracted from one trial and attempts to detect similar steps in the second trial through a greedy template matching approach. The output of our method is a similarity index (SId) comprised between 0 and 1 that reflects the similarity between the patterns observed in both trials. Results on healthy and multiple sclerosis subjects show that this new comparison tool can be used for both inter-individual comparison and longitudinal follow-up.

10.
Front Neurol ; 9: 1185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728804

RESUMO

Background: Recent studies have shown that alterations in executive function and attention lead to balance control disturbances. One way of exploring the allocation of attention is to record eye movements. Most experimental data come from a free viewing of static scenes but additional information can be leveraged by recording eye movements during natural tasks. Here, we aimed to provide evidence of a correlation between impaired visual alteration in natural tasks and postural control in patients suffering from Radiation-Induced Leukoencephalopathy (RIL). Methods: The study subjects were nine healthy controls and 10 patients who were diagnosed with RIL at an early stage, with isolated dysexecutive syndrome without clinically detectable gait or posture impairment. We performed a balance evaluation and eye movement recording during an ecological task (reading a recipe while cooking). We calculated a postural score and oculomotor parameters already proposed in the literature. We performed a variable selection using an out-of-bag random permutation and a random forest regression algorithm to find: (i) if visual parameters can predict postural deficit and, (ii) which are the most important of them in this prediction. Results were validated using the leave-one-out cross-validation procedure. Results: Postural scores indeed were found significantly lower in patients with RIL than in healthy controls. Visual parameters were found able to predict the postural score of RIL patients with normalized root mean square error (RMSE) of 0.16. The present analysis showed that horizontal and vertical eye movements, as well as the average duration of the saccades and fixations influenced significantly the prediction of the postural score in RIL patients. While two patients with very low MATTIS-Attention sub score showed the lowest postural scores, no statistically significant relationship was found between the two outcomes. Conclusion: These results highlight the significant relationship between the severity of balance deficits and the visual characteristics in RIL patients. It seems that increased balance impairment is coupled with a reduced focusing capacity in ecological tasks. Balance and eye movement recordings during a natural task could be a useful aspect of multidimensional scoring of the dysexecutive syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...