Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904516

RESUMO

The restoration of cartilage damage is a slow and not always successful process. Kartogenin (KGN) has significant potential in this space-it is able to induce the chondrogenic differentiation of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range of 2.4-4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with high entrapment efficiencies of >93%. The various blends of polymers had a range of release profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h. The range of release profiles observed offers the potential to provide a precisely tailored profile via preparing physical mixtures of the materials. The formulations are highly cytocompatible with primary human osteoblasts.

2.
Adv Biol (Weinh) ; 6(2): e2101139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34962104

RESUMO

The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Preparações Farmacêuticas , Animais , Humanos , Pulmão , SARS-CoV-2
3.
J Drug Deliv Sci Technol ; 64: None, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345260

RESUMO

The high target specificity and multifunctionality of proteins has led to great interest in their clinical use. To this end, the development of delivery systems capable of preserving their bioactivity and improving bioavailability is pivotal to achieve high effectiveness and satisfactory therapeutic outcomes. Electrohydrodynamic (EHD) techniques, namely electrospinning and electrospraying, have been widely explored for protein encapsulation and delivery. In this work, monoaxial and coaxial electrospinning and electrospraying were used to encapsulate alkaline phosphatase (ALP) into poly(ethylene oxide) fibres and particles, respectively, and the effects of the processing techniques on the integrity and bioactivity of the enzyme were assessed. A full morphological and physicochemical characterisation of the blend and core-shell products was performed. ALP was successfully encapsulated within monolithic and core-shell electrospun fibres and electrosprayed particles, with drug loadings and encapsulation efficiencies of up to 21% and 99%, respectively. Monoaxial and coaxial electrospinning were equally effective in preserving ALP function, leading to no activity loss compared to fresh aqueous solutions of the enzyme. While the same result was observed for monoaxial electrospraying, coaxial electrospraying of ALP caused a 40% reduction in its bioactivity, which was attributed to the high voltage (22.5 kV) used during processing. This demonstrates that choosing between blend and coaxial EHD processing for protein encapsulation is not always straightforward, being highly dependent on the chosen therapeutic agent and the effects of the processing conditions on its bioactivity.

4.
Pharmaceutics ; 13(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209671

RESUMO

The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.

5.
J Control Release ; 329: 1172-1197, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127450

RESUMO

Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.

6.
Front Vet Sci ; 7: 616293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521089

RESUMO

Nowadays the intentional poisoning of domestic and wild animals is a crime in the European Union (EU), but as in the past the poison is still used in rural areas of a number of European countries to kill animals that were considered harmful for human activities. From January 2014 up until October 2020, the Laboratory of Pharmacology and Toxicology of the Faculty of Veterinary Medicine (LFT-FMV) has done the analytical detection of poisoning substances in 503 samples of wildlife and domestic animals and pesticides residues were found in 239 of the samples analyzed. In this retrospective study, toxicology results from domestic species (dog, cat, sheep, cows, and horses), wildlife species (red foxes, birds of prey, lynx, and wild boar), and food baits, are presented. During this period the samples analyzed at the LFT-FMV, were received from all over the country. Analytical detections were performed via solvent extraction followed by thin layer chromatography. Molluscicides (47%, n = 109) and Carbamates (24%, n = 57) were found to be the first category of pesticides involved in intoxications, in both domestic and wild animals, followed by rodenticides (13%, n = 30)-in this group second and third generation, were the most represented; Strychnine is the third (11%, n = 26) even though this pesticide has been banned in Portugal since 1988 and in the European Union since 2006 and finally Organophosphates (5%, n = 11) in the small number. This study allowed to realize that a great number of positive samples involved banned pesticides (i.e., Aldicarb and Strychnine) but, at the same time, many positives cases were due to the exposure to commercially available products (i.e., Methiocarb and Anticoagulant rodenticides). Also, it's possible to identify the areas where domestic species are the most affected (i.e., Setubal and Lisboa) and the areas where the wild animals are the mainly affected species (i.e., Faro, Castelo Branco, and Bragança).

7.
J Forensic Sci ; 64(5): 1304-1311, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30801721

RESUMO

Most emerging or re-emerging infections are vector-borne or zoonotic and can be disseminated worldwide by infected humans or animals. They are a major public health problem and cause a great impact on economy. Zoonotic outbreaks began to be characterized in the 90s, after the creation of Europol and the FBI. Such investigations are carried by forensic pathologists and other specialists to determine whether an outbreak is natural or deliberate. This review will discuss ten zoonotic outbreaks nonrelated to wars focusing on forensic management. In conclusion, some points should be highlighted in the management of a zoonotic outbreak: (i) its diagnosis and detection by forensic pathologists and the coordination of efforts between other specialists are key factors; (ii) communication guidelines and an efficient healthcare system are crucial for any emergency response; (iii) biosafety of all specialists involved must be guaranteed.


Assuntos
Surtos de Doenças , Zoonoses/epidemiologia , Animais , Antraz/epidemiologia , Antraz/transmissão , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Febre Aftosa/epidemiologia , Febre Aftosa/transmissão , Medicina Legal , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/transmissão , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/transmissão , História do Século XX , História do Século XXI , Humanos , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/transmissão , Escherichia coli Shiga Toxigênica , Tularemia/epidemiologia , Tularemia/transmissão , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...