Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 141: 504-510, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493450

RESUMO

Alginate (ALG) is an abundant, biocompatible, regenerative, and nontoxic polysaccharide that has potential applications in tissue engineering. Silver sulfadiazine (SDZ) is a topical antibiotic used to control bacterial infection in burns. Aiming to combine the intrinsic alginate characteristics and silver sulfadiazine antimicrobial properties, hydrotalcite ([Mg-Al]-LDH) was used as a host matrix to obtain a system efficient in delivering SDZ from alginate films. SDZ was successfully intercalated in [Mg-Al]-LDH through structural reconstruction. Different solutions were prepared using sodium alginate at 10 wt%, glycerol at 10 wt% as a plasticizer and [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ as fillers at 1 wt% and 5 wt%. Films were obtained by continuous casting and further characterized for their microstructural, mechanical, water barrier and antimicrobial properties. Cytotoxicity tests were also performed on fibroblasts cells. The incorporation of [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ presented neither negative nor positive effects on the mechanical properties and morphology of the alginate films. Moreover, samples containing SDZ exhibited inhibitory activity against S. aureus, E. coli, and S. enterica. The addition of [Mg-Al]-LDH/SDZ even at the highest concentration did not afford a very significant cytotoxicity to the alginate-[Mg-Al]-LDH/SDZ films. These results describe a suitable approach for preparing innovative active wound dressings integrated to efficient drug delivery.


Assuntos
Alginatos , Antibacterianos , Bactérias/crescimento & desenvolvimento , Bandagens , Membranas Artificiais , Sulfadiazina de Prata , Cicatrização/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Humanos , Teste de Materiais , Sulfadiazina de Prata/química , Sulfadiazina de Prata/farmacologia
2.
Int J Biol Macromol ; 118(Pt B): 1817-1823, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006012

RESUMO

Bio-based chitosan/pectin blend films were prepared by solution casting and fully characterized in terms of their viscoelastic, thermo-mechanical and water affinity properties. Dynamic light scattering and rheological analyses served as a probe that polyelectrolyte complexes were formed through COO-/NH3+ ionic cross-linking, changing the chitosan/pectin solutions from Newtonian to pseudoplastic gel-like systems. The highest degree of ionic cross-linking has been found at a specific mass ratio (chitosan/pectin 25/75) and solid-state data were obtained in detail using dynamic mechanical thermal analysis. Ionic cross-linking was determining on the physical properties of chitosan/pectin blends, which was demonstrated by the thermo-mechanical spectra, high water contact angle and tensile strength of films. The specific thermo-mechanical properties of the chitosan/pectin films can be specifically modulated according to the chitosan/pectin mass ratio to ensure successfully applications in medicine, drug delivery, agricultural and food coatings.


Assuntos
Quitosana/química , Íons/química , Pectinas/química , Difusão Dinâmica da Luz , Elasticidade , Fenômenos Mecânicos , Polímeros/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Viscosidade
3.
J Agric Food Chem ; 61(29): 7110-9, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23799648

RESUMO

This paper reports on the development of bioactive edible films based on pectin as a dietary matrix and magnesium hydroxide (Mg(OH)2) nanoplates as a reinforcing filler. Nanocomposites of high-methoxyl (HM) and low-methoxyl (LM) pectins were prepared using the casting method at concentrations of Mg(OH)2 ranging from 0.5 to 5 wt %. Atomic force microscopy and FTIR spectroscopy were employed to characterize the nanocomposite structure. The tensile properties and thermal stability of the nanocomposites were also examined to ascertain the effect of Mg(OH)2 inclusion and degree of methoxylation. The results provided evidence that the Mg(OH)2 nanoplates were uniformly dispersed and interacted strongly with the film matrix. The mechanical and thermal properties were significantly improved in the nanocomposite films compared to the control. Mg(OH)2 nanoplates were more effective in improving properties of LM pectin. Preliminary migration studies using arugula leaves confirmed that pectin-Mg(OH)2 nanocomposites can release magnesium hydroxide by contact, demonstrating their potential for magnesium supplementation in bioactive packaging.


Assuntos
Embalagem de Alimentos/métodos , Hidróxido de Magnésio/química , Nanocompostos/química , Pectinas/química , Brassicaceae , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria
4.
Carbohydr Polym ; 92(2): 1743-51, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399215

RESUMO

In this paper the mechanical reinforcement of nano-sized brucite, Mg(OH)(2) in a series of bionanocomposite films based on starch was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations (0-7.5 wt.%). Scanning electron microscopy revealed a high degree of nanoplate dispersion within the starch bionanocomposites and good interfacial adhesion between the filler and matrix. The brucite nanoplates formed agglomerates at high concentrations. The reinforcement factor values of the bionanocomposites were higher than the values predicted from the Halphin-Tsai model, which was attributed mainly to the high surface area of the nanoplates. Brucite (1 wt.%) nearly doubled the elastic modulus of starch films. Thermogravimetric analyses indicated some interaction between starch and the brucite that modified their decomposition profiles. Mechanical tests of glycerol plasticized bionanocomposites showed that the reinforcing efficiency of brucite remained high even at 10 wt.% and 20 wt.% of plasticizer.


Assuntos
Hidróxido de Magnésio/química , Nanocompostos/química , Nanopartículas/química , Amido/química , Glicerol/química , Fenômenos Mecânicos , Modelos Moleculares , Conformação Molecular , Plásticos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA