Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121093

RESUMO

Alteration of motor control during REM sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 is not associated with alpha-synucleinopathies. To determine whether the chronic absence of ORX neuropeptides is sufficient to induce RBD symptoms, we analyzed during REM sleep the EMG signal of the prepro-hypocretin knockout mice (ORX-/-), a recognized mouse model of NT1. Then, we evaluated the severity of motor alterations by comparing EMG data of ORX-/- mice to those of mice with a targeted suppression of the sublaterodorsal glutamatergic neurotransmission, a recognized rodent model of iRBD. We found a significant alteration of tonic and phasic components of EMG during REM sleep in ORX-/- mice, with more phasic events and more REM sleep episodes without atonia compared to the control wild-type mice. However, these phasic events were fewer, shorter and less complex in ORX-/- mice compared to the RBD-like ORX-/- mice. We thus show that ORX-deficiency, as seen in NT1, is sufficient to impair muscle atonia during REM sleep with a moderate severity of alteration as compared to isolated RBD mice. As described in NT1 patients, we report a major inter-individual variability in the severity and the frequency of RBD symptoms in ORX-deficient mice.

2.
Skin Res Technol ; 30(8): e13890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096178

RESUMO

SIGNIFICANCE: Multilesional basal cell carcinoma (BCC) are spread on sun exposed skin areas, including arms, face and back. The first-line treatment remains the surgical resection or Mohs surgery. Despite its high complexity, Mohs surgery is well practiced in USA and Germany and presents very good results both in esthetic and in carcinology point of view. Large lesions more than 2 cm remain challenging to remove by topical cream used in photodynamic therapy (PDT). If these larger lesions are not treated in less than 1 month, they could grow deeply in the skin, thus enhancing the risk of reoccurrence and the severity of the disease. Despite this model herein studied, that is non melanoma skin cancer is a good prognostic cancer, the therapy aims to be applied to more aggressive melanoma skin cancers. AIM: Total regression of large cutaneous lesions less than 1 month with no reoccurrence. APPROACH: Tumor induction on murine model bearing a 500 mm3 subcutaneous lesion. Increasing dose of gold nanoparticles at fixed initial concentration C0 = 0.3 mg/mL, infused into the tumor then exposition of the region of interest to NIR medical laser to assess the therapy. One or two intratumoral administration(s) were compared to surgery and control, that is no treatment, laser alone or nanoparticles alone. RESULTS: Gold nanoparticles alone or the NIR laser alone did not induce the tumor regression. The combination of laser and nanoparticles called plasmonic nanophotothermal therapy induced apoptosis. Derma and hypoderm do not show any visible gold nanoparticles and demonstrated a good cicatrization process. CONCLUSION: Plasmonic nanophotothermal therapy using two doses of gold nanoparticles was the only protocol that proved its efficacy on large lesions in 14 days, that is 500 mm3 on a murine model bearing human basal cell carcinoma.


Assuntos
Carcinoma Basocelular , Ouro , Nanopartículas Metálicas , Terapia Fototérmica , Neoplasias Cutâneas , Carcinoma Basocelular/patologia , Carcinoma Basocelular/terapia , Ouro/química , Animais , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Nanopartículas Metálicas/uso terapêutico , Humanos , Camundongos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Feminino , Terapia Combinada/métodos
3.
Heliyon ; 10(8): e29297, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644868

RESUMO

In radiotherapy, metallic nanoparticles are of high interest in the fight against cancer for their radiosensitizing effects. This study aimed to evaluate the ability of core-shell Fe3O4@Au nanoparticles to potentiate the irradiation effects on redox-, pro-inflammatory markers, and cell death of A549 human pulmonary cancer cells. The hybrid Fe3O4@Au nanoparticles were synthesized using green chemistry principles by the sonochemistry method. Their characterization by transmission electron microscopy demonstrated an average size of 8 nm and a homogeneous distribution of gold. The decreased hydrodynamic size of these hybrid nanoparticles compared to magnetite (Fe3O4) nanoparticles showed that gold coating significantly reduced the aggregation of Fe3O4 particles. The internalization and accumulation of the Fe3O4@Au nanoparticles within the cells were demonstrated by Prussian Blue staining. The reactive oxygen species (ROS) levels measured by the fluorescent probe DCFH-DA were up-regulated, as well as mRNA expression of SOD, catalase, GPx antioxidant enzymes, redox-dependent transcription factor Nrf2, and ROS-producing enzymes (Nox2 and Nox4), quantified by RT-qPCR. Furthermore, irradiation coupled with Fe3O4@Au nanoparticles increased the expression of canonical pro-inflammatory cytokines and chemokines (TNF-α, IL-1ß, IL-6, CXCL8, and CCL5) assessed by RT-qPCR and ELISA. Hybrid nanoparticles did not potentiate the increased DNA damage detected by immunofluorescence following the irradiation. Nevertheless, Fe3O4@Au caused cellular damage, leading to apoptosis through activation of caspase 3/7, secondary necrosis quantified by LDH release, and cell growth arrest evaluated by clonogenic-like assay. This study demonstrated the potential of Fe3O4@Au nanoparticles to potentiate the radiosensitivity of cancerous cells.

4.
Front Physiol ; 15: 1342024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312316

RESUMO

Bone health is controlled by the balance between bone formation by osteoblasts and degradation by osteoclasts. A disequilibrium in favor of bone resorption leads to osteolytic diseases characterized by decreased bone density. Osteoclastic resorption is dependent on the assembly of an adhesion structure: the actin ring, also called podosome belt or sealing zone, which is composed of a unique patterning of podosomes stabilized by microtubules. A better understanding of the molecular mechanisms regulating the crosstalk between actin cytoskeleton and microtubules network is key to find new treatments to inhibit bone resorption. Evidence points to the importance of the fine tuning of the activity of the small GTPase RHOA for the formation and maintenance of the actin ring, but the underlying mechanism is not known. We report here that actin ring disorganization upon microtubule depolymerization is mediated by the activation of the RHOA-ROCK signaling pathway. We next show the involvement of GEF-H1, one of RHOA guanine exchange factor highly expressed in osteoclasts, which has the particularity of being negatively regulated by sequestration on microtubules. Using a CRISPR/Cas9-mediated GEF-H1 knock-down osteoclast model, we demonstrate that RHOA activation upon microtubule depolymerization is mediated by GEF-H1 release. Interestingly, although lower levels of GEF-H1 did not impact sealing zone formation in the presence of an intact microtubule network, sealing zone was smaller leading to impaired resorption. Altogether, these results suggest that a fine tuning of GEF-H1 through its association with microtubules, and consequently of RHOA activity, is essential for osteoclast sealing zone stability and resorption function.

5.
Sci Adv ; 10(7): eadi1736, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354248

RESUMO

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Mama , Genes ras , Transdução de Sinais , Senescência Celular/genética , Microambiente Tumoral
6.
Am J Perinatol ; 41(S 01): e3305-e3312, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154466

RESUMO

OBJECTIVE: Pneumothorax (PTX) is a potentially life-threatening condition that affects neonates, with an incidence of 0.05 to 2%. Its management includes conservative treatment, chest tube (CT) drainage, and needle aspiration (NA). Aims were to evaluate the incidence of PTX in a 10-hospital perinatal network, its clinical characteristics and risk factors, and to compare the different treatment options. STUDY DESIGN: All neonates diagnosed with PTX and hospitalized in the network were included in this retrospective observational trial over a period of 30 months. Primary outcome was the incidence of PTX. Secondary outcomes were the treatment modality, the length of stay (LOS), and the number of chest X-rays. RESULTS: Among the 173 neonates included, the overall incidence of PTX was 0.56 per 100 births with a large range among the hospitals (0.12-1.24). Thirty-nine percent of pneumothoraces were treated conservatively, 41% by CT drainage, 13% by NA, and 7% by combined treatment. Failure rate was higher for NA (37%) than for CT drainage (9%). However, the number of X-rays was lower for patients treated by NA, with a median of 6 (interquartile range [IQR] 4-6.25), than by CT drainage, with a median of 9 (IQR 7-12). LOS was shorter for NA than for CT drainage, with a median of 2 (IQR 1-4.25) and 6 days (IQR 3-15), respectively. Complications, including apnea and urinary retention, occurred in 28% of patients managed with CT drainage, whereas none was observed with NA. CONCLUSION: High variability of PTX incidence was observed among the hospitals within the network, but these values correspond to the literature. NA showed to reduce the number of X-rays, the LOS, and complications compared with CT drainage, but it carries a high failure rate. This study helped provide a new decisional management algorithm to harmonize and improve PTX treatment within our network. KEY POINTS: · Neonatal PTX is a frequent pathology with a high incidence requiring urgent management.. · We report a large variability of PTX incidence between different hospitals of the same network.. · Needle aspiration carries higher failure rate, shorter hospital stay duration without complications reported..


Assuntos
Tubos Torácicos , Drenagem , Tempo de Internação , Pneumotórax , Humanos , Pneumotórax/terapia , Pneumotórax/epidemiologia , Estudos Retrospectivos , Recém-Nascido , Feminino , Masculino , Suíça/epidemiologia , Incidência , Drenagem/métodos , Tempo de Internação/estatística & dados numéricos , Tratamento Conservador/métodos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA