Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(8): 5234-5247, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38343996

RESUMO

Transition metal dichalcogenides are at the center of intense scientific activity due to their promising applications, as well as the growing interest in basic research related to their electronic and dielectric properties. The layered structure of single-(ML) and two-layer (2ML) samples presents exciting features for light-matter interaction, electron transport, and electronic and optoelectronic applications. Lattice vibrations and electron-phonon interactions are essential for studying the above mentioned topics. Phonon spectra in ML and 2ML of MoX2 and WX2 (X = S, Se, and Te) families are studied using first principles calculations. A comprehensive analysis of the two-dimensional optical-phonon dispersion laws is performed, and the results illustrate the main differences between ML and 2ML for each considered semiconductor. Taking advantage of ab initio calculations, a generalization of the phenomenological Born-Huang dielectric model for long-wavelength vibrational modes around the Γ-point of the Brillouin zone (BZ) in 2ML structures is implemented. Explicit expressions are derived for the optical phonon dispersion of in-plane and out-of-plane normal modes. The set of characteristic parameters describing each long-wavelength optical branch is resolved from a direct comparison with the exact dispersion laws provided using the first principles calculations. The long-range electron-phonon Pekar-Fröhlich (PF) interaction and intra-valley electron scattering rates at the K-point of the BZ via E' (LO) and Eul longitudinal optical oscillations are examined for the ML and 2ML structures, respectively. The non-local macroscopic screening and the coupling between the in-plane electric field and longitudinal optical mechanical oscillation, profoundly affect the PF Hamiltonian and the carrier inverse relaxation time.

2.
Phys Chem Chem Phys ; 25(28): 19214-19229, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37431713

RESUMO

Transition-metal (TM) substituted SrTiO3 has attracted much attention because its magnetism and/or ferroelectricity can be tuned via cation substitution, point defects, strain and/or oxygen deficiency. For example, Goto et al. [Phys. Rev. Applied, 7, 024006 (2017)] reported the magnetization of SrTi1-xFexO3-δ (STF) grown under different oxygen pressures and on various substrates. Here, we use hybrid density functional theory to calculate the effects of different oxygen vacancy (VO) states in STF on the magnetization for a variety of Fe cation arrangements. The magnetic states of the cations associated with the VO ground-states for x = {0.125, 0.25} are used within a Monte Carlo model for collinear magnetism to simulate the spontaneous magnetization. Our model captures several experimental features of STF, i.e., an increase in magnetization for small δ up to a maximum of ∼0.35µB per formula unit at an intermediate number of vacancies, with a slower decrease in magnetization with an increasing number of vacancies. Our approach gives insight into the relation between vacancy concentration and the oxygen pressure required to maximize the magnetization.

3.
Nanoscale ; 12(8): 5014-5020, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32065195

RESUMO

We present electronic structure calculations of twisted double bilayer graphene (TDBG): a tetralayer graphene structure composed of two AB-stacked graphene bilayers with a relative rotation angle between them. Using first-principles calculations, we find that TDBG is semiconducting with a band gap that depends on the twist angle, that can be tuned by an external electric field. The gap is consistent with TDBG symmetry and its magnitude is related to surface effects, driving electron transfer from outer to inner layers. The surface effect competes with an energy upshift of localized states at inner layers, giving rise to the peculiar angle dependence of the band gap, which reduces at low angles. For these low twist angles, the TDBG develops flat bands, in which electrons in the inner layers are localized at the AA regions, as in twisted bilayer graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...