Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39039989

RESUMO

Catheter-associated urinary tract infections represent a major share of nosocomial infections, and are associated with longer periods of hospitalization and a huge financial burden. Currently, there are only a handful of commercial materials that reduce biofilm formation on urinary catheters, mostly relying on silver alloys. Therefore, we combined silver-phenolated lignin nanoparticles with poly(carboxybetaine) zwitterions to build a composite antibiotic-free coating with bactericidal and antifouling properties. Importantly, the versatile lignin chemistry enabled the formation of the coating in situ, enabling both the nanoparticle grafting and the radical polymerization by using only the oxidative activity of laccase. The resulting surface efficiently prevented nonspecific protein adsorption and reduced the bacterial viability on the catheter surface by more than 2 logs under hydrodynamic flow, without exhibiting any apparent signs of cytotoxicity. Moreover, the said functionality was maintained over a week both in vitro and in vivo, whereby the animal models showed excellent biocompatibility.

2.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688234

RESUMO

Biomass fillers offer the possibility to modify the mechanical properties of foams, increasing their cost-effectiveness and reducing their carbon footprint. In this study, bio-based PU (soft, open cells for the automotive sector) and epoxy (EP, hard, closed cells for construction applications) composite foams were prepared by adding pristine and laccase-mediated lauryl gallate-hydrophobized hemp protein particles as filler (HP and HHP, respectively). The fillers were able to modify the density, the mechanical properties and the morphology of the PU and EP foams. The addition of HP filler increases the density of PU foams up to 100% and significantly increases the σ values by 40% and Emod values. On the other hand, the inclusion of the HHP as filler in PU foams mostly results in reduced density, by almost 30%, and reduced σ values in comparison with reference and HP-filled foams. Independently from filler concentration and type, the biomass increased the Emod values for all foams relative to the reference. In the case of the EP foams, the tests were only conducted for the foams filled with HHP due to the poor compatibility of HP with the EP matrix. HHP decreased the density, compressive strength and Emod values of the composites. For both foams, the fillers increased the size of the cells, while reducing the amount of open cells of PU foams and the amount of closed cells for EP foams. Finally, both types of foams filled with HHP reduced the moisture uptake by 80 and 45%, respectively, indicating the successful hydrophobization of the composites.

3.
Ultrason Sonochem ; 98: 106499, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37393854

RESUMO

As the most abundant renewable aromatic polymer on the planet, lignin is gaining growing interest in replacing petroleum-based chemicals and products. However, only <5 % of industrial lignin waste is revalorized in its macromolecular form as additives, stabilizing agents or dispersant and surfactants. Herein, revalorization of this biomass was achieved by implementing an environmentally-friendly continuous sonochemical nanotransformation to obtain highly concentrated lignin nanoparticles (LigNPs) dispersions for added-value material applications. With the aim to further model and control a large-scale ultrasound-assisted lignin nanotransformation, a two-level factorial design of experiment (DoE) was implemented varying the ultrasound (US) amplitude, flow rate, and lignin concentration. Size and polydispersity measurements together with the UV-Vis spectra of lignin recorded at different time intervals of sonication allowed to monitor and understand the sonochemical process on a molecular level. The light scattering profile of sonicated lignin dispersions showed a significant particle size reduction in the first 20 min, followed by moderate particle size decrease below 700 nm until the end of the 2 h process. The response surface analysis (RSA) of the particle size data revealed that the lignin concentration and sonication time were the most important factors to achieve smaller NPs. From a mechanistic point of view, a strong impact of the particle-particle collisions due to sonication seems to be responsible for the decrease in particle size and homogenization of the particle distribution. Unexpectedly, a strong interaction between the flow rate and US amplitude on the particle size and nanotransformation efficiency was observed, yielding smaller LigNPs at high amplitude and low flow rate or vice versa. The data derived from the DoE were used to model and predict the size and polydispersity of the sonicated lignin. Furthermore, the use of the NPs spectral process trajectories calculated from the UV-Vis spectra showed similar RSA model as the dynamic light scattering (DLS) data and will potentially allow the in-line monitoring of the nanotransformation process.

4.
Pharmaceutics ; 15(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376166

RESUMO

Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.

5.
ACS Appl Mater Interfaces ; 14(33): 37270-37279, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960019

RESUMO

In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias , Lacase/química , Lignina/química , Lignina/farmacologia , Nanopartículas Metálicas/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA