Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(10): 8950-8959, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309491

RESUMO

Oxy-fuel combustion of refuse waste is gaining considerable attention as a viable CO2 negative technology that can enable the continued use of stationary combustion plants during the transition to renewable energy sources. Compared to fossil fuels, waste-derived fuels tend to be highly heterogeneous and to contain a greater amount of alkaline metals and chlorine. Therefore, experimental studies are mandatory to thoroughly elucidate refuse materials' combustion and pollutant formation behavior. This paper presents an experimental investigation on the air and oxy-fuel combustion of solid recovered fuel at a 200 kWth circulating fluidized bed facility. In the course of two experimental campaigns, the effects of combustion atmosphere and temperature on pollutant formation (i.e., NO x , SO2, and HCl) and reactor hydrodynamics were systematically studied. In contrast to air-firing conditions, the experimental results showed that oxy-fuel combustion enhanced the volume concentration of NO x by about 50% while simultaneously decreasing the fuel-specific NO x emissions (by about 33%). The volume concentrations of SO2 and HCl were significantly influenced by the absorption capacity of calcium-containing ash particles, yielding corresponding values close to 10 and 200 ppmv at 871-880 °C under oxy-fuel combustion conditions. In addition, the analysis of hydrodynamic data revealed that smooth temperature profiles are indispensable to mitigate bed sintering and agglomeration risks during oxy-fuel operation. The results included in this study provide a valuable contribution to the database of experimental information on the oxy-fuel combustion of alternative fuels, which can be applied in future process model validations and scale-up studies.

2.
ACS Omega ; 5(50): 32318-32333, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376868

RESUMO

The CO2 capture performance of sorbents derived from three distinct limestones, including a metamorphosed limestone, is studied under conditions relevant for calcium looping CO2 capture from power plant flue gas. The combined and individual influence of flue gas H2O and SO2 content, the influence of textural changes caused by sequential calcination/carbonation cycles, and the impact of CaSO4 accumulation on the sorbents' capture performance were examined using bubbling fluidized bed reactor systems. The metamorphosed limestone-derived sorbents exhibit atypical capture behavior: flue gas H2O negatively influences CO2 capture performance, while limited sulfation can positively influence CO2 capture, with space time significantly impacting CO2 and SO2 co-capture performance. The morphological characteristics influencing sorbents' capture behavior were examined using imaging and material characterization tools, and a detailed discussion is presented. This insight into the morphology responsible for metamorphosed limestone-derived sorbent's anomalous capture behavior can guide future sorbent selection and design efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...