Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Exp Bot ; 65(15): 4451-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863435

RESUMO

Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Quinolonas/metabolismo , Solanum lycopersicum/metabolismo , Sulfonamidas/metabolismo , Ácido Abscísico/agonistas , Adaptação Fisiológica , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Fosfatase 2C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...