Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 361: 385-401, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562555

RESUMO

Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.


Assuntos
Antimaláricos , Malária Vivax , Animais , Camundongos , Ratos , Primaquina/uso terapêutico , Primaquina/farmacologia , Cloroquina , Plasmodium vivax , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA