Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(1): 44-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153386

RESUMO

In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.


Assuntos
Marte , Mustelidae , Animais , Meio Ambiente Extraterreno , Regiões Antárticas , Exobiologia , DNA
2.
Astrobiology ; 23(12): 1303-1336, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133823

RESUMO

In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.


Assuntos
Cianobactérias , Marte , Robótica , Humanos , Exobiologia/métodos , Trifosfato de Adenosina , Biomarcadores/análise , Meio Ambiente Extraterreno
3.
Astrobiology ; 23(12): 1259-1283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930382

RESUMO

The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.


Assuntos
Cianobactérias , Marte , Raios Ultravioleta , Exobiologia/métodos , Anticorpos , Biomarcadores/análise , Clima Desértico
4.
Astrobiology ; 23(12): 1284-1302, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856168

RESUMO

We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary In Situ Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement. Biosignatures were detected in basin samples collected at depths ranging from 20 to 80 cm but were not detected in the surrounding area. Subsurface stratigraphy of the units drilled was interpreted from drill sensor data as fine-scale layers of sand/clay sediments interspersed with layers of harder material in the basins and a uniform subsurface composed of course-to-fine sand in the surroundings. The mission timeline and number of commands sent to accomplish each activity were tracked. The deepest sample collected (80 cm) required 55 commands, including drilling and delivery to three instruments. Elapsed time required for drilling and sample handling was less than 3 hours to collect sample from 72 cm depth, including time devoted to recovery from a jammed drill. The experiment demonstrated drilling, sample transfer technologies, and instruments that accomplished successful detection of biomolecular evidence of life in one of the most biologically sparse environments on Earth.


Assuntos
Exobiologia , Marte , Robótica , Chile , Planetas , Areia , Água
5.
Anal Chem ; 95(12): 5323-5330, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926836

RESUMO

Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets. Ancestral Sequence Reconstruction (ASR) followed by protein "resurrection" in the lab can help to narrow the selection of targets. Herein, we propose an immunoanalytical method to identify ancient and universally conserved protein/peptide sequences as targets for identifying ancestral biomarkers in nature. We have developed, tested, and validated this approach by producing antibodies to eight previously described ancestral resurrected proteins (three ß-lactamases, three thioredoxins, one Elongation Factor Tu, and one RuBisCO, all of them theoretically dated as Precambrian), and used them as a proxy to search for any potential feature of them that could be present in current natural environments. By fluorescent sandwich microarray immunoassays (FSMI), we have detected positive immunoreactions with antibodies to the oldest ß-lactamase and thioredoxin proteins (ca. 4 Ga) in samples from a hydrothermal environment. Fine epitope mapping and inhibitory immunoassays allowed the identification of well-conserved epitope peptide sequences that resulted from ASR and were present in the sample. We corroborated these results by metagenomic sequencing and found several genes encoding analogue proteins with significant matches to the peptide epitopes identified with the antibodies. The results demonstrated that peptides inferred from ASR studies have true counterpart analogues in Nature, which validates and strengthens the well-known ASR/protein resurrection technique and our immunoanalytical approach for investigating ancient environments and metabolisms on Earth and elsewhere.


Assuntos
Peptídeos , beta-Lactamases , Biomarcadores , Anticorpos , Mapeamento de Epitopos , Epitopos
6.
Nat Commun ; 14(1): 808, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810853

RESUMO

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia/métodos , Fósseis , Limite de Detecção , Filogenia
7.
Environ Microbiol ; 25(2): 428-453, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453153

RESUMO

Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.


Assuntos
Bactérias , Microbiota , Hibridização in Situ Fluorescente , Bactérias/metabolismo , Ferro/metabolismo , Microbiota/genética , Oxirredução
8.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194868

RESUMO

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Assuntos
Cianobactérias , Marte , Biomarcadores , Cianobactérias/efeitos da radiação , Meio Ambiente Extraterreno , Minerais , Radiação Ionizante
9.
Front Microbiol ; 13: 811904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832812

RESUMO

Hydrothermal systems and their deposits are primary targets in the search for fossil evidence of life beyond Earth. However, to learn how to decode fossil biomarker records in ancient hydrothermal deposits, we must first be able to interpret unambiguously modern biosignatures, their distribution patterns, and their association with physicochemical factors. Here, we investigated the molecular and isotopic profile of microbial biomarkers along a thermal gradient (from 29 to 72°C) in a hot spring (labeled Cacao) from El Tatio, a geyser field in the Chilean Andes with abundant opaline silica deposits resembling the nodular and digitate structures discovered on Mars. As a molecular forensic approach, we focused on the analysis of lipid compounds bearing recognized resistance to degradation and the potential to reconstruct the paleobiology of an environment on a broader temporal scale than other, more labile, biomolecules. By exploiting the lipid biomarkers' potential to diagnose biological sources and carbon fixation pathways, we reconstructed the microbial community structure and its ecology along the Cacao hydrothermal transect. The taxonomic adscription of the lipid biomarkers was qualitatively corroborated with DNA sequencing analysis. The forensic capacity of the lipid biomarkers to identify biosources in fresh biofilms was validated down to the genus level for Roseiflexus, Chloroflexus, and Fischerella. We identified lipid biomarkers and DNA of several new cyanobacterial species in El Tatio and reported the first detection of Fischerella biomarkers at a temperature as high as 72°C. This, together with ecological peculiarities and the proportion of clades being characterized as unclassified, illustrates the ecological singularity of El Tatio and strengthens its astrobiological relevance. The Cacao hydrothermal ecosystem was defined by a succession of microbial communities and metabolic traits associated with a high- (72°C) to low-(29°C) temperature gradient that resembled the inferred metabolic sequence events from the 16S rRNA gene universal phylogenetic tree from thermophilic to anoxygenic photosynthetic species and oxygenic phototrophs. The locally calibrated DNA-validated lipidic profile in the Cacao biofilms provided a modern (molecular and isotopic) end member to facilitate the recognition of past biosources and metabolisms from altered biomarkers records in ancient silica deposits at El Tatio analogous to Martian opaline silica structures.

10.
Astrobiology ; 21(11): 1421-1437, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551267

RESUMO

Detecting evidence of life on other planetary bodies requires a certain understanding of known biomarkers and their chemical nature, preservation potential, or biological specificity. In a planetary search for life, carbonates are of special interest due to their known association with life as we know it. On Earth, carbonates serve as an invaluable paleogeochemical archive of fossils of up to billions of years old. Here, we investigated biomarker profiles on three Chilean Triassic-Jurassic sedimentary records regarding our search for signs of past and present life over ∼200 Ma. A multianalytical platform that combines lipid-derived biomarkers, metaproteomics, and a life detector chip (LDChip) is considered in the detection of biomolecules with different perdurability and source-diagnosis potential. The combined identification of proteins with positive LDChip inmunodetections provides metabolic information and taxonomic affiliation of modern/subrecent biosignatures. Molecular and isotopic analysis of more perdurable hydrocarbon cores allows for the identification of general biosources and dominant autotrophic pathways over time, as well as recreation of prevailing redox conditions over ∼200 Ma. We demonstrate how extraterrestrial life detection can benefit from the use of different biomarkers to overcome diagnosis limitations due to a lack of specificity and/or alteration over time. Our findings have implications for future astrobiological missions to Mars.


Assuntos
Exobiologia , Marte , Carbonatos , Planeta Terra , Meio Ambiente Extraterreno , Fósseis , Planetas
11.
Front Microbiol ; 12: 670982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276605

RESUMO

Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geomicrobiology of the permanently exposed lithic substrates of nunataks from Livingston Island (South Shetlands, Antarctic Peninsula), with focus on prokaryotic community structure and their main metabolic traits. Contrarily to first hypothesis, an extensive sampling based on different gradients and multianalytical approaches demonstrated significant differences for most geomicrobiological parameters between the bedrock, soil, and loose rock substrates, which overlapped any other regional variation. Brevibacillus genus dominated on bedrock and soil substrates, while loose rocks contained a diverse microbial community, including Actinobacteria, Alphaproteobacteria and abundant Cyanobacteria inhabiting the milder and diverse microhabitats within. Archaea, a domain never described before in similar Antarctic environments, were also consistently found in the three substrates, but being more abundant and potentially more active in soils. Stable isotopic ratios of total carbon (δ 13C) and nitrogen (δ 15N), soluble anions concentrations, and the detection of proteins involved in key metabolisms via the Life Detector Chip (LDChip), suggest that microbial primary production has a pivotal role in nutrient cycling at these exposed areas with limited deposition of nutrients. Detection of stress-resistance proteins, such as molecular chaperons, suggests microbial molecular adaptation mechanisms to cope with these harsh conditions. Since early Mars may have encompassed analogous environmental conditions as the ones found in these Antarctic nunataks, our study also contributes to the understanding of the metabolic features and biomarker profiles of a potential Martian microbiota, as well as the use of LDChip in future life detection missions.

12.
Microb Biotechnol ; 14(3): 1228-1236, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929101

RESUMO

The surge of SARS-CoV-2 has challenged health systems worldwide and efficient tests to detect viral particles, as well as antibodies generated against them, are needed. Specificity, sensitivity, promptness or scalability are the main parameters to estimate the final performance, but rarely all of them match in a single test. We have developed SCOVAM, a protein microarray with several viral antigens (spike, nucleocapsid, main protease Nsp5) as capturing probes in a fluorescence immunoassay for COVID-19 serological testing. SCOVAM depicts IgG and IgM antibody responses against each of these proteins of 22 individuals in a single microscope slide. It detects specific IgM (0.094 µg ml-1 ) and IgG (~0.017 µg ml-1 ) and is scalable and cost-effective. We validated SCOVAM by comparing with a widely used chemiluminescent commercial serological test (n = 742). SCOVAM showed twice the sensitivity and allowed following seroconversion in a single assay. By analysing the prevalence 4 months later in a subset of 76 positive sera, we still detected 93.42% of positives, almost doubling the detection of the commercial assay. The higher sensitivity of SCOVAM is especially relevant to screen sera for convalescent plasma-based treatments, high-throughput antibody response monitoring after vaccination or evaluation of vaccine efficiency.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/terapia , Teste Sorológico para COVID-19 , Humanos , Imunização Passiva , Imunoglobulina G , Imunoglobulina M , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
13.
Astrobiology ; 20(9): 1076-1096, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32856927

RESUMO

Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.


Assuntos
Exobiologia/instrumentação , Gelo/análise , Dispositivos Lab-On-A-Chip , Marte , Microbiologia da Água , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Microscopia/instrumentação , Voo Espacial/instrumentação , Análise Espectral Raman/instrumentação
14.
Astrobiology ; 20(9): 1029-1047, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916858

RESUMO

Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/análise , Marte , Bactérias/química , Bactérias/metabolismo , Biomarcadores/análise , Biomarcadores/química , Biomarcadores/metabolismo , Compostos Férricos/análise , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos de Ferro/análise , Compostos de Ferro/química , Lipídeos/análise , Lipídeos/química , Minerais/análise , Minerais/química , Rios/química , Rios/microbiologia , Robótica , Simulação de Ambiente Espacial/métodos , Espanha , Sulfatos/análise , Sulfatos/química , Difração de Raios X
15.
Front Microbiol ; 11: 590736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391207

RESUMO

Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.

16.
Front Microbiol ; 10: 1641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396176

RESUMO

The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13-1,125; 168-10,109; and 9,904-30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.

17.
Astrobiology ; 19(12): 1490-1504, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31339746

RESUMO

Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5-76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin-Benson-Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.


Assuntos
Extremófilos/isolamento & purificação , Fontes Termais/microbiologia , Microbiota/fisiologia , Regiões Antárticas , Biomarcadores/análise , Isótopos de Carbono/análise , Temperatura Baixa/efeitos adversos , Extremófilos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta/efeitos adversos , Ilhas , Origem da Vida , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação
18.
Front Microbiol ; 10: 929, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130930

RESUMO

Potential benthic habitats of early Mars lakes, probably oligotrophic, could range from hydrothermal to cold sediments. Dynamic processes in the water column (such as turbidity or UV penetration) as well as in the benthic bed (temperature gradients, turbation, or sedimentation rate) contribute to supply nutrients to a potential microbial ecosystem. High altitude, oligotrophic, and deep Andean lakes with active deglaciation processes and recent or past volcanic activity are natural models to assess the feasibility of life in other planetary lake/ocean environments and to develop technology for their exploration. We sampled the benthic sediments (down to 269 m depth) of the oligotrophic lake Laguna Negra (Central Andes, Chile) to investigate its ecosystem through geochemical, biomarker profiling, and molecular ecology studies. The chemistry of the benthic water was similar to the rest of the water column, except for variable amounts of ammonium (up to 2.8 ppm) and nitrate (up to 0.13 ppm). A life detector chip with a 300-antibody microarray revealed the presence of biomass in the form of exopolysaccharides and other microbial markers associated to several phylogenetic groups and potential microaerobic and anaerobic metabolisms such as nitrate reduction. DNA analyses showed that 27% of the Archaea sequences corresponded to a group of ammonia-oxidizing archaea (AOA) similar (97%) to Nitrosopumilus spp. and Nitrosoarchaeum spp. (Thaumarchaeota), and 4% of Bacteria sequences to nitrite-oxidizing bacteria from the Nitrospira genus, suggesting a coupling between ammonia and nitrite oxidation. Mesocosm experiments with the specific AOA inhibitor 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) demonstrated an AOA-associated ammonia oxidation activity with the simultaneous accumulation of nitrate and sulfate. The results showed a rich benthic microbial community dominated by microaerobic and anaerobic metabolisms thriving under aphotic, low temperature (4°C), and relatively high pressure, that might be a suitable terrestrial analog of other planetary settings.

19.
Environ Microbiol ; 21(10): 3577-3600, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31087616

RESUMO

Peñahueca is an athalassohaline hypersaline inland ephemeral lake originated under semiarid conditions in the central Iberian Peninsula (Spain). Its chemical composition makes it extreme for microbial life as well as a terrestrial analogue of other planetary environments. To investigate the persistence of microbial life associated with sulfate-rich crusts, we applied cultivation-independent methods (optical and electron microscopy, 16S rRNA gene profiling and metagenomics) to describe the prokaryotic community and its associated viruses. The diversity for Bacteria was very low and was vastly dominated by endospore formers related to Pontibacillus marinus of the Firmicutes phylum. The archaeal assemblage was more diverse and included taxa related to those normally found in hypersaline environments. Several 'metagenome assembled genomes' were recovered, corresponding to new species of Pontibacillus, several species from the Halobacteria and one new member of the Nanohaloarchaeota. The viral assemblage, although composed of the morphotypes typical of high salt systems, showed little similarity to previously isolated/reconstructed halophages. Several putative prophages of Pontibacillus and haloarchaeal hosts were identified. Remarkably, the Peñahueca sulfate-rich metagenome contained CRISPR-associated proteins and repetitions which were over 10-fold higher than in most hypersaline systems analysed so far.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Vírus/genética , Archaea/classificação , Bactérias/classificação , Biodiversidade , Exobiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/metabolismo , Espanha , Sulfatos/metabolismo , Vírus/classificação
20.
Sci Total Environ ; 650(Pt 1): 384-393, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199683

RESUMO

The ability to establish biofilms is a key trait for microorganisms growing in extreme environments. The extracellular polymeric substances (EPS) present in biofilms provide not only surface attachment, but also protection against all kinds of environmental stressors, including desiccation, salinity, temperature or heavy metal pollution. The acquisition of suitable biofilm characteristics might thus be an important process mediating the adaptation of microorganisms to novel environmental conditions. In this work we have characterized the EPS of 20 phylogenetically diverse biofilms collected in situ from five contrasting extreme environments, including two geothermal areas (Copahue, Argentina; Seltun, Iceland), two cold areas (Pastoruri glacier, Peru; Byers Peninsula, Antarctica) and one extremely acidic river (Río Tinto, Spain). Biofilms were subjected to biochemical characterization, glycan profiling and immunoprofiling with an antibody microarray. Our results showed that environmental conditions strongly influence biofilm characteristics, with microorganisms from the same environment achieving similar EPS compositions regardless of the phylogeny of their main species. The concentration of some monosaccharides in the EPS could be related to environmental conditions such as temperature or heavy metal toxicity, suggesting that in some cases stress resistance can be mediated by specific sugars. Overall, our results highlight the existence of conserved EPS compositional patterns for each extreme environment, which could in turn be exploited to engineer ecological adaptations in genetically modified microorganisms.


Assuntos
Adaptação Fisiológica/fisiologia , Biofilmes , Matriz Extracelular/química , Ambientes Extremos , Regiões Antárticas , Argentina , Bactérias/química , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , Islândia , Monossacarídeos/análise , Peru , Polissacarídeos/análise , RNA Ribossômico 16S/genética , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...