Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Sci Rep ; 14(1): 6703, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509089

RESUMO

The decline of the iconic monarch butterfly (Danaus plexippus) in North America has motivated research on the impacts of land use and land cover (LULC) change and climate variability on monarch habitat and population dynamics. We investigated spring and fall trends in LULC, milkweed and nectar resources over a 20-year period, and ~ 30 years of climate variables in Mexico and Texas, U.S. This region supports spring breeding, and spring and fall migration during the annual life cycle of the monarch. We estimated a - 2.9% decline in milkweed in Texas, but little to no change in Mexico. Fall and spring nectar resources declined < 1% in both study extents. Vegetation greenness increased in the fall and spring in Mexico while the other climate variables did not change in both Mexico and Texas. Monarch habitat in Mexico and Texas appears relatively more intact than in the midwestern, agricultural landscapes of the U.S. Given the relatively modest observed changes in nectar and milkweed, the relatively stable climate conditions, and increased vegetation greenness in Mexico, it seems unlikely that habitat loss (quantity or quality) in Mexico and Texas has caused large declines in population size or survival during migration.


Assuntos
Asclepias , Borboletas , Animais , México , Texas , Néctar de Plantas , Migração Animal , Melhoramento Vegetal , Ecossistema
2.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327962

RESUMO

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
3.
Front Oncol ; 13: 1171887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342183

RESUMO

In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.

4.
Arch Biochem Biophys ; 739: 109559, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906097

RESUMO

Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.


Assuntos
Trifosfato de Adenosina , Neoplasias , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Glicólise/fisiologia , Fosforilação Oxidativa , Ciclo do Ácido Cítrico
5.
Front Oncol ; 12: 1018137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419896

RESUMO

Several biological processes related to cancer malignancy are regulated by 17-ß estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERß receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.

6.
Curr Med Chem ; 29(15): 2719-2735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636290

RESUMO

BACKGROUND: The major hurdles for successful cancer treatment are drug resistance and invasiveness developed by breast cancer stem cells (BCSC). OBJECTIVE: As these two processes are highly energy-dependent, the identification of the main ATP supplier required for stem cell viability may result advantageous in the design of new therapeutic strategies to deter malignant carcinomas. METHODS: The energy metabolism (glycolysis and oxidative phosphorylation, OxPhos) was systematically analyzed by assessing relevant protein contents, enzyme activities, and pathway fluxes in BCSC. Once identified as the main ATP supplier, selective energy inhibitors and canonical breast cancer drugs were used to block stem cell viability and metastatic properties. RESULTS: OxPhos and glycolytic protein contents, as well as HK and LDH activities were several times higher in BCSC than in their parental line, MCF-7 cells. However, CS, GDH, COX activities, and both energy metabolism pathway fluxes were significantly lower (38-86%) in BCSC than in MCF-7 cells. OxPhos was the main ATP provider (>85%) in BCSC. Accordingly, oligomycin (a specific and potent canonical OxPhos inhibitor) and other non-canonical drugs with inhibitory effect on OxPhos (celecoxib, dimethylcelecoxib) significantly decreased BCSC viability, levels of epithelial-mesenchymal transition proteins, invasiveness, and induced ROS over-production, with IC50 values ranging from 1 to 20 µM in 24 h treatment. In contrast, glycolytic inhibitors (gossypol, iodoacetic acid, 3-bromopyruvate, 2-deoxyglucose) and canonical chemotherapeutic drugs (paclitaxel, doxorubicin, cisplatin) were much less effective against BCSC viability (IC50> 100 µM). CONCLUSION: These results indicated that the use of some NSAIDs may be a promising alternative therapeutic strategy to target BCSC.


Assuntos
Neoplasias da Mama , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/patologia , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo
7.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931340

RESUMO

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Assuntos
Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Acetilação , Histonas , Cinética
8.
Biochim Biophys Acta Gen Subj ; 1865(12): 130021, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597724

RESUMO

BACKGROUND: Most of the enzymes involved in the central carbon metabolism are acetylated in Lys residues. It has been claimed that this covalent modification represents a novel regulatory mechanism by which both enzyme/transporter activities and pathway fluxes can be modulated. METHODS: To establish which enzymes are regulated by acetylation, a systematic experimental analysis of activities and acetylation profile for several energy metabolism enzymes and pathway fluxes was undertaken in cells and mitochondria. RESULTS: The majority of the glycolytic and neighbor enzymes as well as mitochondrial enzymes indeed showed Lys-acetylation, with GLUT1, HPI, CS, ATP synthase displaying comparatively lower acetylation patterns. The incubation of cytosolic and mitochondrial fractions with recombinant Sirt-3 produced lower acetylation signals, whereas incubation with acetyl-CoA promoted protein acetylation. Significant changes in acetylation levels of MDH and IDH-2 from rat liver mitochondria revealed no change in their activities. Similar observations were attained for the cytosolic enzymes from AS-30D and HeLa cells. A minor but significant (23%) increase in the AAT-MDH complex activity induced by acetylation was observed. To examine this question further, AS-30D and HeLa cells were treated with nicotinamide and valproic acid. These compounds promoted changes in the acetylation patterns of glycolytic proteins, although their activities and the glycolytic flux (as well as the OxPhos flux) revealed no clear correlation with acetylation. CONCLUSION: Acetylation seems to play no predominant role in the control of energy metabolism enzyme activities and pathway fluxes. GENERAL SIGNIFICANCE: The physiological function of protein acetylation on energy metabolism pathways remains to be elucidated.


Assuntos
Transportador de Glucose Tipo 1 , Acetilação , Metabolismo Energético , Células HeLa , Humanos
9.
Front Oncol ; 11: 697408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414111

RESUMO

Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3-10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5-6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1-2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.

10.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333716

RESUMO

This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning ("preventive protocol"; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation ("curative protocol"; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41-85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.

12.
Biochim Biophys Acta Gen Subj ; 1864(11): 129687, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712171

RESUMO

BACKGROUND: Kinetic modeling and control analysis of a metabolic pathway may identify the steps with the highest control in tumor cells, and low control in normal cells, which can be proposed as the best therapeutic targets. METHODS: Enzyme kinetic characterization, pathway kinetic modeling and control analysis of the glucose central metabolism were carried out in rat (hepatoma AS-30D) and human (cervix HeLa) cancer cells and normal rat hepatocytes. RESULTS: The glycogen metabolism enzymes in AS-30D, HeLa cells and hepatocytes showed similar kinetic properties, except for higher AS-30D glycogen phosphorylase (GP) sensitivity to AMP. Pathway modeling indicated that fluxes of glycogen degradation and PPP were mainly controlled by GP and NADPH consumption, respectively, in both hepatocytes and cancer cells. Likewise, hexose-6-phosphate isomerase (HPI) and phosphoglucomutase (PGM) exerted significant control on glycolysis and glycogen synthesis fluxes in cancer cells but not in hepatocytes. Modeling also indicated that glycolytic and glycogen synthesis fluxes could be strongly decreased when HPI and PGM were simultaneously inhibited in AS-30D cells but not in hepatocytes. Experimental assessment of these predictions showed that both the glycolytic and glycogen synthesis fluxes of AS-30D cells, but not of hepatocytes, were inhibited by oxamate, by inducing increased Fru1,6BP levels, a competitive inhibitor of HPI and PGM. CONCLUSION: HPI and PGM seem suitable targets for decreasing glycolytic and glycogen synthesis fluxes in AS-30D cells but not in hepatocytes. GENERAL SIGNIFICANCE: The present study identified new therapeutic targets within glucose central metabolism in the analyzed cancer cells, with no effects on non-cancer cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Glicogênio/metabolismo , Células HeLa , Humanos , Cinética , Masculino , Modelos Biológicos , Ratos Wistar
13.
Front Oncol ; 10: 429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328457

RESUMO

NH 4 + increased growth rates and final densities of several human metastatic cancer cells. To assess whether glutamate dehydrogenase (GDH) in cancer cells may catalyze the reverse reaction of NH 4 + fixation, its covalent regulation and kinetic parameters were determined under near-physiological conditions. Increased total protein and phosphorylation were attained in NH 4 + -supplemented metastatic cells, but total cell GDH activity was unchanged. Higher V max values for the GDH reverse reaction vs. forward reaction in both isolated hepatoma (HepM) and liver mitochondria [rat liver mitochondria (RLM)] favored an NH 4 + -fixing role. GDH sigmoidal kinetics with NH 4 + , ADP, and leucine fitted to Hill equation showed n H values of 2 to 3. However, the K 0.5 values for NH 4 + were over 20 mM, questioning the physiological relevance of the GDH reverse reaction, because intracellular NH 4 + in tumors is 1 to 5 mM. In contrast, data fitting to the Monod-Wyman-Changeux (MWC) model revealed lower K m values for NH 4 + , of 6 to 12 mM. In silico analysis made with MWC equation, and using physiological concentrations of substrates and modulators, predicted GDH N-fixing activity in cancer cells. Therefore, together with its thermodynamic feasibility, GDH may reach rates for its reverse, NH 4 + -fixing reaction that are compatible with an anabolic role for supporting growth of cancer cells.

14.
Methods Mol Biol ; 2116: 689-718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221950

RESUMO

To validate therapeutic targets in metabolic pathways of trypanosomatids, the criterion of enzyme essentiality determined by gene knockout or knockdown is usually being applied. Since, it is often found that most of the enzymes/proteins analyzed are essential, additional criteria have to be implemented for drug target prioritization. Metabolic control analysis (MCA), often in conjunction with kinetic pathway modeling, offers such possibility for prioritization. MCA is a theoretical and experimental approach to analyze how metabolic pathways are controlled. It involves strategies to perform quantitative analyses to determine the degree in which an enzyme controls a pathway flux, a value called flux control coefficient ([Formula: see text]). By determining the [Formula: see text] of individual steps in a metabolic pathway, the distribution of control of the pathway is established, that is, the identification of the main flux-controlling steps. Therefore, MCA can help in ranking pathway enzymes as drug targets from a metabolic perspective. In this chapter, three approaches to determine [Formula: see text] are reviewed: (1) In vitro pathway reconstitution, (2) manipulation of enzyme activities within parasites, and (3) in silico kinetic modeling of the metabolic pathway. To perform these methods, accurate experimental data of enzyme activities, metabolite concentrations and pathway fluxes are necessary. The methodology is illustrated with the example of trypanothione metabolism of Trypanosoma cruzi and protocols to determine such experimental data for this metabolic process are also described. However, the MCA strategy can be applied to any metabolic pathway in the parasite and general directions to perform it are provided in this chapter.


Assuntos
Desenvolvimento de Medicamentos/métodos , Metabolômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Extratos Celulares/isolamento & purificação , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Simulação por Computador , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos
15.
Front Microbiol ; 10: 2432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708902

RESUMO

Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.

16.
Cells ; 8(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600993

RESUMO

Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.


Assuntos
Redes Reguladoras de Genes , Neoplasias/metabolismo , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Fosforilação Oxidativa , Microambiente Tumoral
17.
Redox Biol ; 26: 101231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203195

RESUMO

Trypanothione (T(SH)2) is the main antioxidant metabolite for peroxide reduction in Trypanosoma cruzi; therefore, its metabolism has attracted attention for therapeutic intervention against Chagas disease. To validate drug targets within the T(SH)2 metabolism, the strategies and methods of Metabolic Control Analysis and kinetic modeling of the metabolic pathway were used here, to identify the steps that mainly control the pathway fluxes and which could be appropriate sites for therapeutic intervention. For that purpose, gamma-glutamylcysteine synthetase (γECS), trypanothione synthetase (TryS), trypanothione reductase (TryR) and the tryparedoxin cytosolic isoform 1 (TXN1) were separately overexpressed to different levels in T. cruzi epimastigotes and their degrees of control on the pathway flux as well as their effect on drug resistance and infectivity determined. Both experimental in vivo as well as in silico analyses indicated that γECS and TryS control T(SH)2 synthesis by 60-74% and 15-31%, respectively. γECS overexpression prompted up to a 3.5-fold increase in T(SH)2 concentration, whereas TryS overexpression did not render an increase in T(SH)2 levels as a consequence of high T(SH)2 degradation. The peroxide reduction flux was controlled for 64-73% by TXN1, 17-20% by TXNPx and 11-16% by TryR. TXN1 and TryR overexpression increased H2O2 resistance, whereas TXN1 overexpression increased resistance to the benznidazole plus buthionine sulfoximine combination. γECS overexpression led to an increase in infectivity capacity whereas that of TXN increased trypomastigote bursting. The present data suggested that inhibition of high controlling enzymes such as γECS and TXN1 in the T(SH)2 antioxidant pathway may compromise the parasite's viability and infectivity.


Assuntos
Antioxidantes/metabolismo , Glutamato-Cisteína Ligase/genética , Glutationa/análogos & derivados , Proteínas de Protozoários/genética , Espermidina/análogos & derivados , Tiorredoxinas/genética , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/genética , Amida Sintases/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular , Combinação de Medicamentos , Resistência a Medicamentos/genética , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Humanos , Peróxido de Hidrogênio/farmacologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Nitroimidazóis/farmacologia , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Espermidina/antagonistas & inibidores , Espermidina/biossíntese , Tiorredoxinas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
18.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128085

RESUMO

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Methanosarcina/metabolismo , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Galinhas , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Genes Arqueais , Cinética , Methanosarcina/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
19.
Med Res Rev ; 39(6): 2397-2426, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31111530

RESUMO

Over the last decade, three major advances have contributed in improving the response rates against cancer including, immunotherapy; greater understanding of the molecular, biochemical, and cellular mechanisms in carcinogenesis thereby providing drug targets; and identification of reliable biomarkers for early detection to facilitate the earlier stage treatment of disease. However, no single universal cancer cure has yet been found, although combinations from the above areas have steadily improved survival outcomes. Hence, chemotherapy remains a key component in the oncologist's arsenal for cancer therapy, despite frequent development of drug resistance and more aggressive cancers with onset of advanced stage metastases. The focus here is to explore the repurposing of old drugs that cause pro-oxidative overload to overcome onset of resistance to chemotherapy and enhance chemotherapeutic responses, particularly against metastatic cancer. Excellent examples of US Food and Drug Administration approved drugs suitable for repurposing are the potent and specific thioreductase inhibitor auranofin and the nonsteroidal anti-inflammatory drug, celecoxib. Recently, both drugs were shown to selectively target and kill metastatic cancer cells and cancer stem cells (CSCs), predominantly by promoting excessive mitochondrial reactive oxygen species. Thus, targeting intracellular redox systems of advanced stage metastatic cancer cells and CSCs can promote an overload of pro-oxidative stress to activate the intrinsic pathway for programmed cell death. It is envisaged that more clinical studies will incorporate longer term use of repurposed drugs, such as auranofin or celecoxib, to target redox systems in cancer cells as part of common practice postcancer diagnosis, providing enhanced chemotherapeutic responses and increased cancer survival.


Assuntos
Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Oxidantes/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxirredução
20.
Toxicol Appl Pharmacol ; 370: 65-77, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30878505

RESUMO

The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 µM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 µM) and non-cancer HUVEC and 3T3 (IC50≥600 µM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 µM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 µM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 µM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Mitofagia/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...