Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5081, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604804

RESUMO

Manipulating the spin state of thin layers of superconducting material is a promising route to generate dissipationless spin currents in spintronic devices. Approaches typically focus on using thin ferromagnetic elements to perturb the spin state of the superconducting condensate to create spin-triplet correlations. We have investigated simple structures that generate spin-triplet correlations without using ferromagnetic elements. Scanning tunneling spectroscopy and muon-spin rotation are used to probe the local electronic and magnetic properties of our hybrid structures, demonstrating a paramagnetic contribution to the magnetization that partially cancels the Meissner screening. This spin-orbit generated magnetization is shown to derive from the spin of the equal-spin pairs rather than from their orbital motion and is an important development in the field of superconducting spintronics.

2.
ACS Appl Mater Interfaces ; 10(26): 22372-22380, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893112

RESUMO

Five percent Fe-doped In2O3 films were deposited using a pulsed laser deposition system. X-ray diffraction and transmission electron microscopy analysis show that the films deposited under oxygen partial pressures of 10-3 and 10-5 Torr are uniform without clusters or secondary phases. However, the film deposited under 10-7 Torr has a Fe-rich phase at the interface. Magnetic measurements demonstrate that the magnetization of the films increases with decreasing oxygen partial pressure. Muon spin relaxation (µSR) analysis indicates that the volume fractions of the ferromagnetic phases in PO2 = 10-3, 10-5, and 10-7 Torr-deposited samples are 23, 49, and 68%, respectively, suggesting that clusters or secondary phases may not be the origin of the ferromagnetism and that the ferromagnetism is not carrier-mediated. We propose that the formation of magnetic bound polarons is the origin of the ferromagnetism. In addition, both µSR and polarized neutron scattering demonstrate that the Fe-rich phase at the interface has a lower magnetization compared to the uniformly distributed phases.

3.
Nat Commun ; 7: 12519, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531192

RESUMO

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (µSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.

4.
Sci Rep ; 5: 13788, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346548

RESUMO

The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~ p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25353500

RESUMO

The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu(+)-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu(+)-F state between ∼ 23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ∼ 0.6 mm. The relaxation rate of the F-Mu(+)-F state up to ∼ 150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk.


Assuntos
Espectroscopia Dielétrica/métodos , Mésons , Modelos Químicos , Politetrafluoretileno/química , Simulação por Computador , Teste de Materiais , Polímeros/química , Marcadores de Spin , Propriedades de Superfície
6.
ACS Nano ; 6(9): 8390-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22917162

RESUMO

We present measurements of the magnetic properties of thin film TbPc(2) single-molecule magnets evaporated on a gold substrate and compare them to those in bulk. Zero-field muon spin relaxation measurements were used to determine the molecular spin fluctuation rate of TbPc(2) as a function of temperature. At low temperature, we find that the fluctuations in films are much faster than in bulk and depend strongly on the distance between the molecules and the Au substrate. We measure a molecular spin correlation time that varies between 1.4 µs near the substrate and 6.6 µs far away from it. We attribute this behavior to differences in the packing of the magnetic cores, which change gradually on the scale of ~10-20 nm away from the TbPc(2)/Au interface.


Assuntos
Imãs , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Térbio/química , Teste de Materiais , Mésons , Marcadores de Spin
7.
Nat Commun ; 2: 272, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21505428

RESUMO

The Meissner effect and associated perfect 'bulk' diamagnetism together with zero resistance and gap opening are characteristic features of the superconducting state. In the pseudogap state of cuprates, unusual diamagnetic signals and anomalous proximity effects have been detected, but a Meissner effect has never been observed. Here we probe the local diamagnetic response in the normal state of an underdoped La(1.94)Sr(0.06)CuO(4) layer (T(c)'≤5 K), which is brought into close contact with two nearly optimally doped La(1.84)Sr(0.16)CuO(4) layers (T(c)≈32 K). We show that the entire 'barrier' layer of thickness, much larger than the typical c axis coherence lengths of cuprates, exhibits a Meissner effect at temperatures above T(c)' but below T(c). The temperature dependence of the effective penetration depth and superfluid density in different layers indicates that superfluidity with long-range phase coherence is induced in the underdoped layer by the proximity to optimally doped layers, but this induced order is sensitive to thermal excitation.


Assuntos
Cobre/química , Campos Eletromagnéticos , Nanotecnologia/métodos , Temperatura , Lantânio/química , Modelos Químicos , Estrôncio/química
8.
Phys Rev Lett ; 101(2): 027202, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18764221

RESUMO

Thin epitaxial films of the diluted magnetic semiconductor (DMS) GaMnAs have been studied by low energy muon spin rotation and relaxation (LE-microSR) as well as by transport and magnetization measurement techniques. LE-microSR allows measurements of the distribution of magnetic field on the nanometer scale inaccessible to traditional macroscopic techniques. The spatial inhomogeneity of the magnetic field is resolved: although homogeneous above Tc, below Tc the DMS consists of ferromagnetic and paramagnetic regions of comparable volumes. In the ferromagnetic regions the local field inhomogeneity amounts to 0.03 T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...