Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Pharm ; 651: 123734, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142017

RESUMO

The present investigation was focused on the development of Soluplus®-based nanomicelles (NMs) (10 % w/v) loaded with Efavirenz (EFV) (5 mg/mL) and Curcumin (natural bio-enhancer) (CUR) (5, 10 and 15 mg/mL) to improve the oral bioavalability of EFV. Micellar formulations were obtained employing an acetone-diffusion technique. Apparent aqueous solubility was increased up to ∼1250-fold and 25,000-fold for EFV and CUR, respectively. Drug-loaded nanoformulations showed an excellent colloidal stability with unimodal size distribution and PDI values < 0.30. In vitro drug release was 41.5 % (EFV) and 2.6 % (CUR) from EFV-CUR-NMs over 6 h in simulated gastrointestinal fluids. EFV-CUR-loaded NMs resulted as safe nanoformulations according to the in vitro cytocompatibility assays in Caco-2 cells. Furthermore, CUR bio-enhancer activity was demonstrated for those nanoformulations. A CUR concentration of 15 mg/mL produced a significant (p < 0.05) increment (2.64-fold) of relative EFV oral bioavailability. Finally, the active role of the lymphatic system in the absorption process of EFV, after its oral administration was assessed in a comparative pharmacokinetic study in presence and absence of cycloheximide, a lymphatic transport inhibitor. Overall our EFV-CUR-NMs denoted their potential as a novel nanotechnological platform, representing a step towards an optimized "nano-sized" therapy for AIDS patients.


Assuntos
Alcinos , Curcumina , Ciclopropanos , Humanos , Células CACO-2 , Disponibilidade Biológica , Benzoxazinas , Solubilidade , Micelas , Portadores de Fármacos , Administração Oral , Tamanho da Partícula
2.
Toxicon ; 236: 107349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979924

RESUMO

Shiga toxin producing Escherichia coli (STEC) are foodborne pathogens that release Shiga toxin (Stx), virulence factor responsible for the development of Hemolytic Uremic Syndrome (HUS). Stx causes endothelial cell damage, which leads to platelets deposition and thrombi formation within the microvasculature. It has been described that Stx activates blood cells and induces the shedding of proinflammatory and prothrombotic microvesicles (MVs) containing the toxin. In this sense, it has been postulated that MVs containing Stx2 (MVs-Stx2+) can contribute to the physiopathology of HUS, allowing Stx2 to reach the target organs while evading the immune system. In this work, we propose that circulating MVs-Stx2+ can be a potential biomarker for the diagnosis and prognosis of STEC infections and HUS progression. We developed a rat HUS model by the intraperitoneal injection of a sublethal dose of Stx2 and observed: decrease in body weight, increase of creatinine and urea levels, decrease of creatinine clearance and histological renal damages. After characterization of renal damages, we investigated circulating total MVs and MVs-Stx2+ by flow cytometry at different times after Stx2 injection. Additionally, we evaluated the correlation of biochemical parameters such as creatinine and urea in plasma with MVs-Stx2+. As a result, we found a significant circulation of MVs-Stx2+ at 72 and 96 h after Stx2 injection, nevertheless no correlation with creatinine and urea plasma levels were detected. Our results suggest that MVs-Stx2+ may be an additional biomarker for the characterization and diagnosis of HUS progression. A further analysis is required in order to validate MVs-Stx2+ as biomarker of the disease.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Ratos , Animais , Toxina Shiga II/toxicidade , Creatinina , Síndrome Hemolítico-Urêmica/etiologia , Síndrome Hemolítico-Urêmica/patologia , Ureia , Biomarcadores
3.
Polymers (Basel) ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835924

RESUMO

Nanotechnology has emerged as a possible solution to improve phytochemicals' limitations. The objective of the present study was to encapsulate beetroot extract (BR Ext) within a chitosan (CS)-based nanogel (NG) designed via ionic crosslinking with tripolyphosphate (TPP) for betanin (Bet) delivery, mainly in the ophthalmic environment. BR Ext is rich in betanin (Bet) according to thin layer chromatography (TLC), UV-visible spectroscopy, and HPLC analysis. NG presented a monodisperse profile with a size of 166 ± 6 nm and low polydispersity (0.30 ± 0.03). ζ potential (ζ-Pot) of +28 ± 1 is indicative of a colloidally stable system. BR Ext encapsulation efficiency (EE) was 45 ± 3%. TEM, with the respective 3D-surface plots and AFM, showed spherical-elliptical-shaped NG. The BR Ext release profile was biphasic with a burst release followed by slow and sustained phase over 12 h. Mucoadhesion assay demonstrated interactions between NG with mucin. Moreover, NG provided photoprotection and pH stability to BR Ext. FRAP and ABTS assays confirmed that BR Ext maintained antioxidant activity into NG. Furthermore, in vitro assays using human retinal cells displayed absence of cytotoxicity as well as an efficient protection against injury agents (LPS and H2O2). NGs are a promising platform for BR Ext encapsulation, exerting controlled release for ophthalmological use.

4.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631251

RESUMO

BACKGROUND: Ursodeoxycholic acid (UDCA) is a therapeutic agent used for the treatment of cholestatic hepatobiliary diseases in pediatric patients. It is a bile acid that presents high lipophilicity, and it belongs to Class II of the Biopharmaceutical Classification System (BCS), which exhibits low water solubility and high intestinal permeability, which leads to poor oral absorption. The objective of this work was to design and optimize UDCA nanosuspensions by means of the precipitation-ultrasonication method to improve the solubility, dissolution, and oral bioavailability of UDCA. METHODS: A three-level, three-factor Box-Behnken design was used to optimize formulation variables and obtain uniform, small-particle-size UDCA nanosuspensions. The independent variables were: stabilizer percentage (X1), amplitude (X2), and sonication time (X3), and the dependent variable was the particle size (Y1). In the precipitation-ultrasonication method, UDCA was dissolved in acetone:PEG 400 (1:1 v/v) and quickly incorporated into the antisolvent (pre-cooled aqueous dispersion of HPMC E-15 0.3%), by means of intense sonication at 50 W for 5 min, controlling temperature through an ice water bath. The lyophilization efficacy was evaluated by means of a cryoprotective efficacy test, working with 10% maltose at -80 °C. The nanosuspensions were characterized by dynamic light scattering (DLS), X-ray diffraction, and scanning electron microscopy (SEM). The physicochemical stability was determined at 25 °C and 4 °C at 7, 14, 30, and 60 days, and the UDCA content was analyzed via HPLC-UV. An in vitro dissolution assay and an oral bioavailability study were performed in male Wistar rats. RESULTS: A significant impact was achieved in the optimized nanosuspension with 0.3% (stabilizer), 50 W (amplitude), and 5 min (sonication time), with a particle size of 352.4 nm, PDI of 0.11, and zeta potential of -4.30 mV. It presented adequate physicochemical stability throughout the study and the UDCA content was between 90% and 110%. In total, 86% of UDCA was dissolved in the in vitro dissolution test. The relative oral bioavailability was similar without significant statistical differences when comparing the lyophilized nanosuspension and the commercial tablet, the latter presenting a more erratic behavior. The pharmacokinetic parameters of the nanosuspension and the commercial tablet were Tmax (1.0 ± 0.9 h vs. 2.0 ± 0.8 h, respectively), Cmax (0.558 ± 0.118 vs. 0.366 ± 0.113 µM, respectively), ΔCmax (0.309 ± 0.099 vs. 0.232 ± 0.056, respectively), AUC (4.326 ± 0.471 vs. 2.188 ± 0.353 µg/mL.h, respectively, p < 0.02), and IAUC0-24h (2.261 ± 0.187 µg/mL.h vs. 1.924 ± 0.440 µg/mL.h, respectively). CONCLUSIONS: The developed nanosuspension presents an appropriate dosage and administration for pediatric patients. On the other hand, it exhibits an adequate absorption and UDCA oral bioavailability.

5.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834958

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Paclitaxel , Histamina , Micelas , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polímeros , Portadores de Fármacos/química , Camundongos Endogâmicos BALB C
6.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678805

RESUMO

We have previously demonstrated significant in vitro natriuretic effects of anandamide (AEA) nanoformulation in polymeric nanoparticles, whose size prevents their accumulation in organs, such as the kidneys. Therefore, it is of particular interest to design and test nanostructures that can pharmacologically accumulate in these organs. In this regard, we prepared and characterized polymeric nanomicelles (~14 and 40 nm). Likewise, their biodistribution was determined. Spontaneously hypertensive rats (SHR) and normotensive rats (WKY), n = 3 per group, were divided into five treatment conditions: control, sham, free AEA freshly dispersed in aqueous solution or 24 h after its dispersion, and AEA encapsulated in nanomicelles. The kidneys were the main site of accumulation of the nanoformulation after 24 h. Freshly dispersed free AEA showed its classical triphasic response in SHR, which was absent from all other treatments. Nanoformulated AEA produced a sustained antihypertensive effect over 2 h, accompanied by a significant increase in fractional sodium excretion (FSE %). These effects were not observed in WKY, sham, or free AEA-treated rats after 24 h of its aqueous dispersion. Without precedent, we demonstrate in vivo natriuretic, diuretic, and hypotensive effects of AEA nanoformulation in polymeric nanomicelles, suggesting its possible use as a new antihypertensive agent with intravenous administration and passive renal accumulation.

7.
Expert Rev Cardiovasc Ther ; 20(8): 647-666, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35880547

RESUMO

INTRODUCTION: Despite the significant contribution of hypertension to the global burden of disease, disease control remains poor worldwide. Considering this unmet clinical need, several new antihypertensive drugs with novel mechanisms of action are under development. AREAS COVERED: The present review summarizes the recent advances in the development of emerging pharmacological agents for the management of hypertension. The latest technological innovations in the design of optimized formulations of available antihypertensive drugs and the potential role of the modification of intestinal microbiota to improve blood pressure (BP) control are also covered. EXPERT OPINION: Significant efforts have been made to develop new antihypertensive agents with novel actions that target the main mechanisms involved in resistant hypertension. Sacubitril/valsartan may emerge as a potential first-line drug due to its superiority over renin angiotensin system inhibitors, and SGLT2 inhibitors can reduce BP in difficult-to-control hypertensive patients with type 2 diabetes. In addition, firibastat and aprocitentan may expand the therapeutic options for resistant hypertension by novel mechanism of actions. Since gut dysbiosis not only leads to hypertension but also causes direct target organ damage, prebiotics and probiotics could represent a potential strategy to prevent or reduce the development of hypertension and to contribute to BP control.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Aminobutiratos , Anti-Hipertensivos/uso terapêutico , Compostos de Bifenilo , Pressão Sanguínea , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipertensão/tratamento farmacológico
8.
Pharmaceutics ; 14(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35631546

RESUMO

Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)-curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.

9.
Rev. argent. cardiol ; 90(1): 36-42, mar. 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1407108

RESUMO

RESUMEN Introducción: En nuestro laboratorio hemos desarrollado implantes subcutáneos de carvedilol capaces de mantener niveles plasmáticos sostenidos del β-bloqueante durante 3 semanas. Objetivo: Evaluación de la liberación in vivo y la eficacia cardioprotectora de implantes subcutáneos de carvedilol desarrollados con poliepsilon- caprolactona (PCL) y Soluplus (SP) en ratas espontáneamente hipertensas (REH). Materiales y métodos: Se utilizaron 12 REH macho (250-300 g), a las cuales se colocó un implante subcutáneo cada 3 semanas de PCL: SP 100:50 mg (control, n = 6) o carvedilol: PCL:SP (100mg:100mg:50mg) (carvedilol, n = 6). Se evaluó el perfil plasmático y el efecto sobre la presión arterial sistólica (PAS) durante 62 días. Al final del tratamiento, se realizaron determinaciones ecocardiográficas y la medición de la PAS y. la presión arterial media (PAM) directas. Resultados: El grupo que recibió el implante conteniendo 100 mg de carvedilol presentó concentraciones plasmáticas del fármaco en el rango de 100- 500 ng/mL a lo largo de 62 días de tratamiento, luego del cual la PAS fue 20 mmHg menor que en el grupo control (217 ± 3 mmHg vs. 237 ± 6 mmHg; p <0,05). Las PAS y PAM directas fueron significativamente menores el grupo tratado que en el control. El implante de carvedilol 100 mg redujo la variabilidad de la presión arterial (VPA) de corto plazo en comparación con el control. Parámetros ecocardiográficos como la fracción de eyección del ventrículo izquierdo (FEVI), fracción de acortamiento, y relación E/A fueron significativamente mayores en las ratas tratadas. El peso del VI fue menor en las ratas que recibieron el implante con carvedilol. Conclusión: Los implantes conteniendo CAR/PCL/SP (100:100:50) mg aportan niveles plasmáticos terapéuticos de carvedilol y estables durante el transcurso del tratamiento, los cuales se correlacionan con una disminución significativa y sostenida de los valores de PA indirecta. El tratamiento con los implantes de carvedilol logró atenuar los valores de PA directa y su variabilidad en las REH. Se demostró que el tratamiento con los implantes ejerció un efecto cardioprotector evidenciado en el ecocardiograma y por una reducción de la hipertrofia ventricular izquierda.


ABSTRACT Background: In our laboratory, we have developed subcutaneous implants of carvedilol capable of maintaining stable concentrations of the β-blocker during 3 weeks. Objective: The aim of this study was to evaluate the in vivo release and the cardioprotective efficacy of subcutaneous implants of carvedilol developed with poly-epsilon-caprolactone (PCL) and Soluplus (SP) polymers in spontaneously hypertensive rats (SHR). Methods: Twelve spontaneously hypertensive male rats (250-300 g) underwent placement of subcutaneous implant of PCL:SP 100:50 mg (control group, n=6) or carvedilol:PCL:SP (100mg:100mg:50mg) (carvedilol group, n=6), every 3 weeks. The plasma profile of each implant and its effect on systolic blood pressure (SBP) was evaluated for 62 days. At the end of treatment, echocardiographic parameters were determined, and direct SBP and direct mean arterial pressure (MAP) were measured. Results: The group that received the implant containing 100 mg of carvedilol presented plasma concentrations of the drug in the range of 100- 500 ng/mL throughout 62 days of treatment, after which the SBP was 20 mmHg lower than in the control group (217±3 mm Hg vs. 237±6 mm Hg; p <0.05). Direct SBP and MAP were significantly lower in the treated group than in the control group. The implant loaded with carvedilol 100 mg reduced short-term blood pressure variability (BPV) in SHR compared with the control group. Echocardiographic parameters as left ventricular ejection fraction (LVEF), shortening fraction and E/A ratio were significantly greater in treated rats. Left ventricular weight was lower in the rats with carvedilol implant. Conclusion: Implants containing CAR/PCL/SP (100:100:50) mg provide therapeutic and stable plasma levels of carvedilol during treatment, which correlate with a significant and sustained decrease in indirect BP values. Treatment with carvedilol implants attenuated dirct BP values and blood pressure variability in SHR. Treatment with implant produced cardioprotective effects evidenced in the echocardiogram by a reduction in left ventricular hypertrophy.

10.
Free Radic Biol Med ; 166: 324-336, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596456

RESUMO

Along with the AgNP applications development, the concern about their possible toxicity has increasingly gained attention. As the respiratory system is one of the main exposure routes, the aim of this study was to evaluate the harmful effects developed in the lung after an acute AgNP exposure. In vivo studies using Balb/c mice intranasally instilled with 0.1 mg AgNP/kg b.w, were performed. 99mTc-AgNP showed the lung as the main organ of deposition, where, in turn, AgNP may exert barrier injury observed by increased protein content and total cell count in BAL samples. In vivo acute exposure showed altered lung tissue O2 consumption due to increased mitochondrial active respiration and NOX activity. Both O2 consumption processes release ROS triggering the antioxidant system as observed by the increased SOD, catalase and GPx activities and a decreased GSH/GSSG ratio. In addition, increased protein oxidation was observed after AgNP exposure. In A549 cells, exposure to 2.5 µg/mL AgNP during 1 h resulted in augment NOX activity, decreased mitochondrial ATP associated respiration and higher H2O2 production rate. Lung 3D tissue model showed AgNP-initiated barrier alterations as TEER values decreased and morphological alterations. Taken together, these results show that AgNP exposure alters O2 metabolism leading to alterations in oxygen metabolism lung toxicity. AgNP-triggered oxidative damage may be responsible for the impaired lung function observed due to alveolar epithelial injury.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Peróxido de Hidrogênio , Pulmão , Nanopartículas Metálicas/toxicidade , Camundongos , Oxigênio
11.
Pharmaceutics ; 13(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535434

RESUMO

Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.

12.
Hypertens Res ; 44(7): 791-802, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33612826

RESUMO

ß-Adrenergic blockers are no longer recommended as first-line therapy due to the reduced cardioprotection of traditional ß-blockers compared with other antihypertensive drugs. It is unknown whether third-generation ß-blockers share the limitations of traditional ß-blockers. The aim of the present study was to compare the effects of nebivolol or atenolol on central and peripheral systolic blood pressure (SBP) and its variability and target organ damage (TOD) in N-nitro-L-arginine methyl ester (L-NAME) hypertensive rats. Male Wistar rats were treated with L-NAME for 8 weeks together with oral administration of nebivolol 30 mg/kg (n = 8), atenolol 90 mg/kg (n = 8), or vehicle (n = 8). The control group was composed of vehicle-treated Wistar rats. SBP and its variability, as well as echocardiographic parameters, were assessed during the last 2 weeks of treatment. Tissue levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor ß (TGF-ß), and histopathological parameters were evaluated in the left ventricle and aorta. Nebivolol had a greater ability than atenolol to decrease central SBP and mid-term and short-term blood pressure variability (BPV) in L-NAME rats. Echocardiographic analysis showed that nebivolol was more effective than atenolol on E/A wave ratio normalization. Compared with atenolol treatment, nebivolol had a greater protective effect on different TOD markers, inducing a decrease in collagen deposition and a reduction in the proinflammatory cytokines IL-6 and TNF-α in the left ventricle and aorta. Our findings suggest that the adverse hemodynamic profile and the reduced cardiovascular protection reported with traditional ß-blockers must not be carried forward to third-generation ß-blockers.


Assuntos
Atenolol , Hipertensão , Nebivolol , Animais , Anti-Hipertensivos/farmacologia , Atenolol/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Hipertensão/tratamento farmacológico , Masculino , Nebivolol/farmacologia , Ratos , Ratos Wistar , Resultado do Tratamento
13.
Mol Biol Rep ; 47(5): 3521-3539, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32297292

RESUMO

Bile acids (BAs) are bioactive molecules that have potential therapeutic interest and their derived salts are used in several pharmaceutical systems. BAs have been associated with tumorigenesis of several tissues including the mammary tissue. Therefore, it is crucial to characterize their effects on cancer cells. The objective of this work was to analyse the molecular and cellular effects of the bile salts sodium cholate and sodium deoxycholate on epithelial breast cancer cell lines. Bile salts (BSs) effects over breast cancer cells viability and proliferation were assessed by MTS and BrdU assays, respectively. Activation of cell signaling mediators was determined by immunobloting. Microscopy was used to analyze cell migration, and cellular and nuclear morphology. Interference of membrane fluidity was studied by generalized polarization and fluorescence anisotropy. BSs preparations were characterized by transmission electron microscopy and dynamic light scattering. Sodium cholate and sodium deoxycholate had dual effects on cell viability, increasing it at the lower concentrations assessed and decreasing it at the highest ones. The increase of cell viability was associated with the promotion of AKT phosphorylation and cyclin D1 expression. High concentrations of bile salts induced apoptosis as well as sustained activation of p38 and AKT. In addition, they affected cell membrane fluidity but not significant effects on cell migration were observed. In conclusion, bile salts have concentration-dependent effects on breast cancer cells, promoting cell proliferation at physiological levels and being cytotoxic at supraphysiological ones. Their effects were associated with the activation of kinases involved in cell signalling.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Desoxicólico/farmacologia , Colato de Sódio/farmacologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Desoxicólico/metabolismo , Humanos , Colato de Sódio/metabolismo
14.
Rev. argent. cardiol ; 88(2): 126-131, mar. 2020. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1250949

RESUMO

RESUMEN Objetivo: El objetivo del presente estudio fue el desarrollo y la evaluación farmacocinética y farmacodinámica de la liberación in vivo de implantes subcutáneos de carvedilol capaces de aportar niveles tisulares estables en modelos experimentales de hipertensión arterial. La incorporación del polímero hidrofílico SoluPlus (SP) en los implantes PCL:SP 150:150 y 50:250 favorece un incremento de la liberación de carvedilol dado que aporta concentraciones plasmáticas en el rango de 100-200 ng/mL durante 2 semanas, lo que tiene como resultado una reducción sostenida de la presión arterial sistólica indirecta en animales SHR. Material y métodos: Se prepararon implantes subcutáneos de poli (epsilon-caprolactona) (PCL) con diferentes proporciones del polímero hidrofílico SoluPlus (300:0; 250:50; 150:150 y 50:250 mg) cargados con 100 mg de carvedilol. Se evaluó el perfil plasmático y el efecto sobre la presión arterial sistólica (PAS) luego del implante de cada formulación en el tejido subcutáneo de ratas espontáneamente hipertensas (REH) macho. Resultados: Las formulaciones PCL:SP 50:250 y 150:150 aportaron niveles en el rango de 100-200 ng/mL. Las formulaciones PCL:SP 250:50 y 300:0 aportaron concentraciones inferiores de carvedilol comprendidas en el rango de los 0-100 ng/mL durante el transcurso del tratamiento. Los animales espontáneamente hipertensos tratados con PCL:SP 50:250 y 150:150 experimentaron un descenso significativo de la presión arterial sistólica (PCL:SP 50:250: DPAS: -36,6 ± 2,0 mmHg; PCL:SP150:150: 35,7 ± 2,2 mmHg; p <0,05 vs. basal). Conclusiones: La incorporación del polímero hidrofílico SoluPlus en los implantes PCL:SP 150:150 y 50:250 favorece un incremento de la liberación de carvedilol, ya que aporta concentraciones plasmáticas del β-bloqueante que aseguran una reducción sostenida de la PAS indirecta en animales espontáneamente hipertensos.


ABSTRACT Objective: The aim of this study was the development and pharmacokinetic/pharmacodynamic evaluation of the in vivo release of subcutaneous implants of carvedilol capable of providing stable tissue levels in experimental models of hypertension. Methods: The subcutaneous implants were prepared with poly (epsilon-caprolactone) (PCL) and different proportions of the SoluPlus (SP) hydrophilic polymer (300:0; 250:50; 150:150 and 50:250 mg) loaded with 100 mg carvedilol. The plasma profile and the effect on systolic blood pressure (SBP) after subcutaneous implantation of each formulation was evaluated in male spontaneously hypertensive rats (SHR). Results: The PCL:SP 50:250 and 150:150 formulations provided levels ranging from 100 to 200 ng/mL and the PCL:SP 250:50 and 300:0 formulations provided lower concentrations of carvedilol ranging from 0 to 100 ng/mL during the treatment period. Spontaneously hypertensive animals treated with the PCL:SP 50:250 y 150:150 implants presented a significant decrease in SBP (PCL:SP 50:250: DPAS: -36.6 ± 2.0 mm Hg; PCL:SP150:150: -35.7 ± 2.2 mmHg; p <0.05 vs. baseline values) Conclusions: The incorporation of the SoluPlus hydrophilic polymer in PC:SP 150:150 and 50:250 implants increases the release of carvedilol, since it provides plasma concentrations ranging from 100 to 200 ng/ml, resulting in a sustained reduction of indirect SBP in SHR.

15.
J Hypertens ; 38(3): 536-545, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028517

RESUMO

BACKGROUND: ß-blockers are no longer considered as first-line antihypertensive drugs due to their lower cardioprotection. METHOD: Considering the differences in the pharmacological properties of ß-blockers, the present work compared the effects of third-generation ß-blockers - carvedilol and nebivolol - with a first-line agent - amlodipine - on hemodynamic parameters, including short-term blood pressure variability (BPV), and their ability to prevent target organ damage in spontaneously hypertensive rats (SHR). SHR rats were orally treated with carvedilol, nebivolol, atenolol, amlodipine or vehicle for 8 weeks. Wistar Kyoto rats treated with vehicle were used as normotensive group. Echocardiographic evaluation, BP, and short-term BPV measurements were performed. Left ventricle and thoracic aorta were removed for histological evaluations and to assess the expression of transforming growth factor ß (TGF-ß), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). RESULTS: Carvedilol, nebivolol or amlodipine induced a greater reduction of carotid BP, short-term BPV and echocardiography parameters than atenolol in SHR rats. Carvedilol, nebivolol and amlodipine were more effective than atenolol in the prevention of cardiac hypertrophy, and cardiac and aortic collagen deposit. Carvedilol and nebivolol, but not atenolol, reduced the expressions of fibrotic and inflammatory biomarkers - TGF-ß, TNF-α and IL-6 - in SHR rats to a similar extent to that of amlodipine. CONCLUSION: Chronic treatment with carvedilol or nebivolol attenuates carotid BP and short-term BPV, and reduces target organ damage in SHR to a greater extent than atenolol. Our findings suggest that the lower cardiovascular protection of nonvasodilating ß-blockers, as atenolol, in hypertension must not be translated to third-generation ß-blockers.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Anlodipino/farmacologia , Anti-Hipertensivos/farmacologia , Atenolol/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Antagonistas Adrenérgicos beta/efeitos adversos , Anlodipino/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Atenolol/efeitos adversos , Citocinas/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR
16.
Mater Sci Eng C Mater Biol Appl ; 95: 328-341, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573256

RESUMO

Nanotechnology has recently emerged as a promising tool in biomedicine research. An important branch of nanotechnology is drug delivery and drug targeting using a wide range of biomaterials with promising potential applications in cancer research. The aim of this review is to provide an overview of the evolution of nanotechnology in cancer therapy, exemplified by a myriad of applications in drug delivery, tumor targeting and reversal of ATP-binding cassette drug transporter-mediated multidrug resistance (MDR) in cancer cells by the biomaterials used in nanoformulations. Special attention will be focused on liver cancer, especially, on hepatocellular carcinoma, which is among the malignancies with the poorest prognosis due to its extremely "difficult-to-treat" nature related to its high recurrence rate and MDR phenotype.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos
17.
Pharm Res ; 35(11): 213, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30238168

RESUMO

Tuberculosis (TB) remains as the second most-deadly infection right behind the HIV/AIDS. Actually, in 2016, TB incidence was estimated in 10.4 million cases. Although an efficient and low-cost TB pharmacotherapy has been available for the last 50 years, the development of multi- and extra-drug-resistant Mycobacterium tuberculosis (Mtb) strains has put on the spot the necessity of improved TB regimens. In this framework, this review article presents the main relevant research outcomes of nanotechnology in TB. The novel delivery systems for antituberculosis drugs have been discussed. Moreover, the active-targeted nanomedicines to the Mtb reservoirs enlighten the possibility to eradicate low-replicant mycobacteria and diminish latent TB. Finally, we present an overview of the TB socio-economic impact and the cost-related features of TB regimens associated with the use of nanoformulations.


Assuntos
Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Nanomedicina/métodos , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana , Humanos , Lipossomos/química , Micelas , Nanopartículas/química , Nanotecnologia/métodos , Tuberculose/patologia
18.
Toxicol Appl Pharmacol ; 357: 106-114, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031011

RESUMO

Doxorubicin (DOX) hydrochloride is a powerful anthracycline antibiotic used for the treatment of various types of malignancies, particularly ovarian and metastatic breast cancer. However, DOX presents severe side effects, such as hepatotoxicity, nephrotoxicity, dose-limiting myelosuppression, brain damage and cardiotoxicity. A liposomal formulation, Doxil®, was approved by the FDA, which has managed to reduce the number of cardiac events in patients with metastatic breast cancer. However, in comparison to free DOX, Doxil® has not shown significant improvements regarding survival. We have previously designed DOX-loaded mixed micelles (MMDOX) composed of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and Tetronic® T1107. To assess the potential toxic effects of this novel formulation, in this work the zebrafish (Danio rerio) model was used to evaluate its in vivo toxicity and teratogenicity. This study evaluated and compared the effects of DOX exposure from different formulations (free DOX, MMDOX and Doxil®) on the swimming activity, morphological alterations, cardiac rhythm, lethality rate and DOX biodistribution. MMDOX showed lower lethal effects, morphological alterations and neurotoxic effects than the free drug. This study shows the potential of the MMDOX to be an effective DOX-delivery system because it could reduce the side effects.


Assuntos
Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Micelas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Larva/efeitos dos fármacos , Atividade Motora , Distribuição Tecidual , Peixe-Zebra
19.
Biomed Pharmacother ; 95: 894-903, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28903185

RESUMO

Doxorubicin (DOX) is used as a "first-line" antineoplastic drug in ovarian and metastatic breast cancer. However, serious side effects, such as cardiotoxicity have been reported after DOX intravenous administration. Hence, we investigated different micelle-former biomaterials, as Soluplus®, Pluronic F127, Tetronic T1107 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) to develop a potential mixed micellar nanocarrier for DOX delivery. Since DOX hydrochloride is a poor candidate to be encapsulated inside the hydrophobic core of the mixed micelles, we assayed a hydrophobic complex between DOX and sodium deoxycholate (NaDC) as an excellent candidate to be encapsulated within polymeric micelles. The combination of T1107:TPGS (1:3, weight ratio) demonstrated the best physicochemical properties together with a high DL capacity (6.43% w/v). Particularly, DOX in vitro release was higher at acidic tumour microenvironment pH value (5.5) than at physiological counterpart (7.4). The hydrodynamic diameter of the DOX/NaDC-loaded mixed micellar system was 10.7nm (PDI=0.239). The in vitro cytotoxicity of the mixed micellar formulation resulted significantly (p<0.05) higher than Doxil® against ovarian (SKOV-3) and triple-negative breast cancer cells (MDA-MB- 231). Further, the in vitro cellular uptake assays demonstrated a significant increment (p<0.05) of the DOX intracellular content for the mixed micelles versus Doxil® for both, SKOV-3 (at 2, 4 and 6h of incubation) and MDA-MB-231 (at 4h of incubation) cells. These findings suggest that T1107:TPGS (1:3) mixed micelles could be employed as a potential nanotechnological platform for drug delivery of DOX.


Assuntos
Neoplasias da Mama/patologia , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Micelas , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/ultraestrutura , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Ovarianas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...