Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biosyst ; 7(4): 984-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21298165

RESUMO

The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the ß-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in ß-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.


Assuntos
Bases de Dados de Proteínas , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas/química , Proteínas/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
2.
Chem Phys ; 348(1-3): 152-160, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19079566

RESUMO

Green Fluorescent Proteins (GFP) and GFP-like proteins all undergo an autocatalytic post-translational modification to form a centrally located chromophore. Structural analyses of all the GFP and GFP-like proteins in the protein databank were undertaken to determine the role of the tight-turn, broken hydrogen bonding, Gly67, Glu222 and Arg96 in the biosynthesis of the imidazolone group from 65SYG67. The analysis was supplemented by computational generation of the conformation adopted by uncyclized wild-type GFP. The data analysis suggests that Arg96 interacts with the Tyr66 carbonyl, stabilizing the reduced enolate intermediate that is required for cyclization; the carboxylate of Glu 222 acts as a base facilitating, through a network of two waters, the abstraction of a hydrogen from the alpha-carbon of Tyr66; a tight-turn conformation is required for autocatalytic cyclization. This conformation is responsible for a partial reduction in the hydrogen bonding network around the chromophore-forming region of the immature protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...