Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 49(2): 250-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20180865

RESUMO

Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ∼500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.


Assuntos
Monitoramento Ambiental/métodos , Movimentos da Água , Abastecimento de Água/análise
2.
J Colloid Interface Sci ; 254(2): 372-83, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12702411

RESUMO

This paper presents a theory for frequency-dependent electroosmosis. It is shown that for a closed capillary the electroosmosis frequency-dependent ratio of DeltaV/DeltaP is constant with increasing frequency until inertial effects become prevalent, at which time DeltaV/DeltaP starts to decrease with increasing frequency. The frequency response of the electroosmosis coupling coefficient is shown to be dependent on the capillary radius. As the capillary radius is made smaller, inertial effects start to occur at higher frequencies. As part of this paper, frequency-dependent electroosmosis is compared to frequency-dependent streaming potentials. In this comparison it is shown that inertial effects start to become more prevalent at higher frequencies for the closed capillary frequency-dependent electroosmosis case than for the frequency-dependent streaming potential case in the same capillary. It is also shown that this difference is due to a second viscosity (transverse) wave that emanates from the velocity zero within the capillary for the electroosmosis case. The second viscosity wave superposes with the viscosity wave that emanates from wall of the capillary to effectively reduce the hydraulic radius of the capillary. Data are presented for a 0.127-mm capillary to support the findings in this paper.

3.
J Colloid Interface Sci ; 234(1): 194-203, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11161506

RESUMO

An experimental apparatus and data acquisition system was constructed to measure the streaming potential coupling coefficients as a function of frequency. The purpose of the experiments was to measure, for the first time, the real and imaginary portion of streaming potentials. In addition, the measured frequency range was extended beyond any previous measurements. Frequency-dependent streaming potential experiments were conducted on one glass capillary and two porous glass filters. The sample pore diameters ranged from 1 mm to 34 µm. Two frequency-dependent models (Packard and Pride) were compared to the data. Both Pride's and Packard's models have a good fit to the experimental data in the low- and intermediate-frequency regime. In the high-frequency regime, the data fit the theory after being corrected for capacitance effects of the experimental setup. Pride's generalized model appears to have the ability to more accurately estimate pore sizes in the porous medium samples. Packard's model has one unknown model parameter while Pride's model has four unknown model parameters, two of which can be independently determined experimentally. Pride's additional parameters may allow for a determination of permeability. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...