Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679580

RESUMO

Driver identification refers to the process whose primary purpose is identifying the person behind the steering wheel using collected information about the driver him/herself. The constant monitoring of drivers through sensors generates great benefits in advanced driver assistance systems (ADAS), to learn more about the behavior of road users. Currently, there are many research works that address the subject in search of creating intelligent models that help to identify vehicle users in an efficient and objective way. However, the different methodologies proposed to create these models are based on data generated from sensors that include different vehicle brands on routes established in real environments, which, although they provide very important information for different purposes, in the case of driver identification, there may be a certain degree of bias due to the different situations in which the route environment may change. The proposed method seeks to intelligently and objectively select the most outstanding statistical features from motor activity generated in the main elements of the vehicle with genetic algorithms for driver identification, this process being newer than those established by the state-of-the-art. The results obtained from the proposal were an accuracy of 90.74% to identify two drivers and 62% for four, using a Random Forest Classifier (RFC). With this, it can be concluded that a comprehensive selection of features can greatly optimize the identification of drivers.


Assuntos
Condução de Veículo , Humanos , Masculino , Acidentes de Trânsito , Algoritmo Florestas Aleatórias , Aprendizagem , Atividade Motora
2.
Healthcare (Basel) ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893185

RESUMO

Type 2 diabetes mellitus (T2DM) represents one of the biggest health problems in Mexico, and it is extremely important to early detect this disease and its complications. For a noninvasive detection of T2DM, a machine learning (ML) approach that uses ensemble classification models with dichotomous output that is also fast and effective for early detection and prediction of T2D can be used. In this article, an ensemble technique by hard voting is designed and implemented using generalized linear regression (GLM), support vector machines (SVM) and artificial neural networks (ANN) for the classification of T2DM patients. In the materials and methods as a first step, the data is balanced, standardized, imputed and integrated into the three models to classify the patients in a dichotomous result. For the selection of features, an implementation of LASSO is developed, with a 10-fold cross-validation and for the final validation, the Area Under the Curve (AUC) is used. The results in LASSO showed 12 features, which are used in the implemented models to obtain the best possible scenario in the developed ensemble model. The algorithm with the best performance of the three is SVM, this model obtained an AUC of 92% ± 3%. The ensemble model built with GLM, SVM and ANN obtained an AUC of 90% ± 3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...