Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R484-R498, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406842

RESUMO

Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia. Here, we mimicked such coronary lesions by subjecting groups of juvenile rainbow trout to coronary ligation, assessing histomorphological myocardial changes associated with ischemia and scarring in the context of cardiac arrhythmias using electrocardiography (ECG). Notable ECG changes resembling myocardial ischemia-like ECG in humans, such as atrioventricular blocks and abnormal ventricular depolarization (prolonged and fragmented QRS complex), as well as repolarization (long QT interval) patterns, were observed during the acute phase of myocardial ischemia. A remarkable 100% survival rate was observed among juvenile trout subjected to coronary ligation after 24 wk. Recovery from coronary ligation occurred through adaptive ventricular remodeling, coupled with a fast cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health in salmonid fish, a family particularly susceptible to cardiac diseases. Furthermore, our results provide valuable insights into comparative studies on the evolution, pathophysiology, and ontogeny of vertebrate cardiac repair and restoration.NEW & NOTEWORTHY Juvenile rainbow trout exhibit a remarkable capacity to recover from cardiac injury caused by myocardial ischemia. Recovery from cardiac damage occurs through adaptive ventricular remodeling, coupled with a rapid cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health within salmonid fishes, which are particularly susceptible to cardiac diseases.


Assuntos
Isquemia Miocárdica , Oncorhynchus mykiss , Animais , Isquemia Miocárdica/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Remodelação Ventricular , Eletrocardiografia , Doenças dos Peixes/fisiopatologia , Doenças dos Peixes/patologia , Fatores de Tempo
2.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36700410

RESUMO

Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.


Assuntos
Oncorhynchus mykiss , Animais , Aclimatação , Débito Cardíaco , Água do Mar , Perfusão
3.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R434-R444, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293250

RESUMO

Catabolic conditions often induce concomitant changes in plasma leptin (Lep), growth hormone (GH), and insulin growth factor I (IGF-I) levels in teleost fish, but it is unclear whether these parts of the endocrine system are responding independently or functionally linked. In this study, fasted rainbow trout was used to study the effects of Lep on the GH-IGF-I system and metabolism. Fish were implanted intraperitoneally with recombinant rainbow trout Lep pellets and remained unfed. After 4 days, plasma GH levels were elevated in the Lep-treated fish in a dose-dependent manner; the expression of hepatic igf1 and plasma IGF-I levels were suppressed accordingly. In vitro Lep treatment reversed ovine GH (oGH)-stimulated expression of igf1 and igf2 in hepatocytes isolated from fasted fish, similar to the inhibitory effects of the MEK1/2 inhibitor U0126 treatment. However, Lep treatment alone had no effect on the expression of igfs or oGH-stimulated ghr2a expression in the hepatocytes. These results demonstrate an additive effect of Lep on suppression of IGF-I under catabolic conditions, indicating that Lep is likely involved in initiation of acquired GH resistance. Although the Lep-implant treatment had no effect on standard metabolic rate, it significantly suppressed gene expression of hepatic hydroxyacyl-CoA dehydrogenase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase, which are key enzymes in lipid utilization and gluconeogenesis, in different patterns. Overall, this study indicates that the Lep increase in fasting salmonids is an important regulatory component for physiological adaptation during periods of food deprivation, involved in suppressing growth and hepatic metabolism to spare energy expenditure.


Assuntos
Fator de Crescimento Insulin-Like I , Oncorhynchus mykiss , Animais , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Leptina/farmacologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Ovinos
4.
J Comp Physiol B ; 192(1): 95-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618204

RESUMO

When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (RSys and RGI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (½ SW, ~ 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with ½ SW causes significantly larger increases in CO, SV and GBF, as well as reductions in RSys and RGI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes.


Assuntos
Oncorhynchus mykiss , Animais , Débito Cardíaco , Água Doce , Oncorhynchus mykiss/fisiologia , Perfusão , Estômago
5.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323276

RESUMO

In fish, maximum O2 consumption rate (MO2,max) and aerobic scope can be expanded following exhaustive exercise in hyperoxia; however, the mechanisms explaining this are yet to be identified. Here, in exhaustively exercised rainbow trout (Oncorhynchus mykiss), we assessed the influence of hyperoxia on MO2,max, aerobic scope, cardiac function and blood parameters to address this knowledge gap. Relative to normoxia, MO2,max was 33% higher under hyperoxia, and this drove a similar increase in aerobic scope. Cardiac output was significantly elevated under hyperoxia at MO2,max because of increased stroke volume, indicating that hyperoxia released a constraint on cardiac contractility apparent with normoxia. Thus, hyperoxia improved maximal cardiac performance, thereby enhancing tissue O2 delivery and allowing a higher MO2,max. Venous blood O2 partial pressure (PvO2) was elevated in hyperoxia at MO2,max, suggesting a contribution of improved luminal O2 supply in enhanced cardiac contractility. Additionally, despite reduced haemoglobin and higher PvO2, hyperoxia treated fish retained a higher arterio-venous O2 content difference at MO2,max. This may have been possible because of hyperoxia offsetting declines in arterial oxygenation that are known to occur following exhaustive exercise in normoxia. If this occurs, increased contractility at MO2,max with hyperoxia may also relate to an improved O2 supply to the compact myocardium via the coronary artery. Our findings show MO2,max and aerobic scope may be limited in normoxia following exhaustive exercise as a result of constrained maximal cardiac performance and highlight the need to further examine whether or not exhaustive exercise protocols are suitable for eliciting MO2,max and estimating aerobic scope in rainbow trout.


Assuntos
Hiperóxia , Oncorhynchus mykiss , Animais , Coração , Oxigênio , Consumo de Oxigênio
6.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33688058

RESUMO

Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.


Assuntos
Hemodinâmica , Oncorhynchus mykiss , Animais , Débito Cardíaco , Circulação Coronária , Coração , Frequência Cardíaca , Hipóxia
7.
J Comp Physiol B ; 191(4): 701-709, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738526

RESUMO

Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of ß-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.


Assuntos
Adrenérgicos , Percas , Animais , Circulação Coronária , Coração , Frequência Cardíaca
8.
J Comp Physiol B ; 191(2): 301-311, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33537851

RESUMO

Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4-9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl-] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future.


Assuntos
Brânquias , Salinidade , Animais , Peixes , Brânquias/metabolismo , Osmorregulação , Equilíbrio Hidroeletrolítico
9.
J Exp Biol ; 224(Pt 6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33568442

RESUMO

Aquatic hypoxia will become increasingly prevalent in the future as a result of eutrophication combined with climate warming. While short-term warming typically constrains fish hypoxia tolerance, many fishes cope with warming by adjusting physiological traits through thermal acclimation. Yet, little is known about how such adjustments affect tolerance to hypoxia. We examined European perch (Perca fluviatilis) from the Biotest enclosure (23°C, Biotest population), a unique ∼1 km2 ecosystem artificially warmed by cooling water from a nuclear power plant, and an adjacent reference site (16-18°C, reference population). Specifically, we evaluated how acute and chronic warming affect routine oxygen consumption rate (MO2,routine) and cardiovascular performance in acute hypoxia, alongside assessment of the thermal acclimation of the aerobic contribution to hypoxia tolerance (critical O2 tension for MO2,routine: Pcrit) and absolute hypoxia tolerance (O2 tension at loss of equilibrium; PLOE). Chronic adjustments (possibly across lifetime or generations) alleviated energetic costs of warming in Biotest perch by depressing MO2,routine and cardiac output, and by increasing blood O2 carrying capacity relative to reference perch acutely warmed to 23°C. These adjustments were associated with improved maintenance of cardiovascular function and MO2,routine in hypoxia (i.e. reduced Pcrit). However, while Pcrit was only partially thermally compensated in Biotest perch, they had superior absolute hypoxia tolerance (i.e. lowest PLOE) relative to reference perch irrespective of temperature. We show that European perch can thermally adjust physiological traits to safeguard and even improve hypoxia tolerance during chronic environmental warming. This points to cautious optimism that eurythermal fish species may be resilient to the imposition of impaired hypoxia tolerance with climate warming.


Assuntos
Percas , Aclimatação , Animais , Ecossistema , Hipóxia , Consumo de Oxigênio
10.
Sci Rep ; 10(1): 5583, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221366

RESUMO

Bio-logging devices can provide unique insights on the life of freely moving animals. However, implanting these devices often requires invasive surgery that causes stress and physiological side-effects. While certain medications in connection to surgeries have therapeutic capacity, others may have aversive effects. Here, we hypothesized that the commonly prescribed prophylactic treatment with enrofloxacin would increase the physiological recovery rate and reduce the presence of systemic inflammation following the intraperitoneal implantation of a heart rate bio-logger in rainbow trout (Oncorhynchus mykiss). To assess post-surgical recovery, heart rate was recorded for 21 days in trout with or without enrofloxacin treatment. Contrary to our hypothesis, treated trout exhibited a prolonged recovery time and elevated resting heart rates during the first week of post-surgical recovery compared to untreated trout. In addition, an upregulated mRNA expression of TNFα in treated trout indicate a possible inflammatory response 21 days post-surgery. Interestingly, the experience level of the surgeon was observed to have a long-lasting impact on heart rate. In conclusion, our study showed no favorable effects of enrofloxacin treatment. Our findings highlight the importance of adequate post-surgical recovery times and surgical training with regards to improving the welfare of experimental animals and reliability of research outcomes.


Assuntos
Antibioticoprofilaxia/veterinária , Oncorhynchus mykiss/cirurgia , Tecnologia de Sensoriamento Remoto/veterinária , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Enrofloxacina/efeitos adversos , Enrofloxacina/uso terapêutico , Feminino , Frequência Cardíaca/efeitos dos fármacos , Hidrocortisona/sangue , Inflamação/prevenção & controle , Inflamação/veterinária , Masculino , Peritônio/cirurgia , RNA Mensageiro/metabolismo , Tecnologia de Sensoriamento Remoto/efeitos adversos , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos
11.
J Exp Biol ; 222(Pt 17)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31395678

RESUMO

In seawater, rainbow trout (Oncorhynchus mykiss) drink and absorb water through the gastrointestinal tract to compensate for water passively lost to the hyperosmotic environment. Concomitantly, they exhibit elevated cardiac output and a doubling of gastrointestinal blood flow to provide additional O2 to the gut and increase convective flux of absorbed ions and water. Yet, it is unknown how warming waters, which elevate tissue O2 demand and the rate of diffusion of ions and water across the gills (i.e. the osmo-respiratory compromise), affects these processes. We measured cardiovascular and blood variables of rainbow trout acclimated to freshwater and seawater during acute warming from 11 to 17°C. Relative to freshwater-acclimated trout, cardiac output was 34% and 55% higher in seawater-acclimated trout at 11 and 17°C, respectively, which allowed them to increase gastrointestinal blood flow significantly more during warming (increases of 75% in seawater vs. 31% in freshwater). These adjustments likely served to mitigate the impact of warming on osmotic balance, as changes in ionic and osmotic blood composition were minor. Furthermore, seawater-acclimated trout seemingly had a lower tissue O2 extraction, explaining why trout acclimated to freshwater and seawater often exhibit similar metabolic rates, despite a higher cardiac output in seawater. Our results highlight a novel role of gastrointestinal blood perfusion in the osmo-respiratory compromise in fish, and improve our understanding of the physiological changes euryhaline fishes must undergo when faced with interacting environmental challenges such as transient warming events.


Assuntos
Aclimatação , Débito Cardíaco , Hemodinâmica , Temperatura Alta , Oncorhynchus mykiss/fisiologia , Animais , Água Doce , Água do Mar
12.
Conserv Physiol ; 6(1): coy061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483401

RESUMO

Greater salinity variations resulting from ongoing climate change requires consideration in conservation management as this may impact on the performance of aquatic organisms. Euryhaline fish exhibit osmoregulatory flexibility and can exploit a wide range of salinities. In seawater (SW), they drink and absorb water in the intestine, which is associated with increased gastrointestinal blood flow. Yet, detailed information on other cardiovascular changes and their control across salinities is scant. Such knowledge is fundamental to understand how fish are affected during migrations between environments with different salinities, as well as by increased future salinity variability. We used rainbow trout (Oncorhynchus mykiss) as a euryhaline model species and determined dorsal aortic blood pressure, cardiac output and systemic vascular resistance in vivo after chronic freshwater-or SW-acclimation. We also assessed α-adrenergic control of blood pressure using pharmacological tools. Dorsal aortic blood pressure and systemic vascular resistance were reduced, whereas cardiac output increased in SW. α-Adrenergic stimulation with phenylephrine caused similar dose-dependent increases in resistance and pressure across salinities, indicating unaltered α-adrenoceptor sensitivity. α-Adrenergic blockade with prazosin decreased resistance and pressure across salinities, but the absolute reduction in resistance was smaller in SW. Yet, both pressure and resistance after prazosin remained consistently lower in SW. This shows that SW-acclimation lowers systemic resistance through reduced vascular α-adrenergic tone, along with other unknown vasodilating factors. The marked changes in adrenergic regulation of the vasculature across salinities discovered here may have implications for cardiovascular and aerobic performance of fishes, with possible impacts on fitness-related traits like digestion and exercise capacity. Moreover, the evolution of more complex circulatory control systems in teleost fishes compared with elasmobranchs and cyclostomes may have been an important factor in the evolution of euryhalinity, and may provide euryhaline teleosts with competitive advantages in more variable salinity environments of the future.

13.
J Comp Physiol B ; 186(6): 759-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27083432

RESUMO

The physiological role of leptin in fish is not fully elucidated. In the present study, the involvement of the leptin system in lipid deposition and mobilization in rainbow trout during feeding and 1, 2 and 4 weeks of fasting was investigated in two lines of rainbow trout with different muscle and visceral adiposity: a fat line (FL) with high total energy reserves, high muscle adiposity, but low visceral adiposity and a lean line (LL) with lower total energy reserves and lower muscle adiposity, but higher visceral adiposity. During 4 weeks of fasting, muscle lipids decreased by 63 % in the FL fish, while no such energy mobilization from muscle occurred in the LL fish. On the other hand, lipid stores in liver and visceral adipose tissue was utilized to a similar extent by the two fish lines during fasting. Under normal feeding conditions, plasma leptin levels were higher in the LL than the FL fish, suggesting a possible contribution of visceral adipocytes to plasma leptin levels. Plasma leptin-binding protein levels did not differ between the lines and were not affected by fasting. After 4 weeks of fasting, the long leptin receptor and the leptin-binding protein isoforms 1 and 3 muscle expression increased in the LL fish, as well as hepatic expression of leptin A1 and the two binding protein isoforms. These responses were not seen in the FL fish. The data suggest that the Lep system in rainbow trout is involved in regulation of energy stores and their mobilization.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Proteínas de Peixes/sangue , Leptina/sangue , Oncorhynchus mykiss/sangue , Animais , Peso Corporal , Jejum/sangue , Feminino , Proteínas de Peixes/genética , Trato Gastrointestinal/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Estado Nutricional , Oncorhynchus mykiss/genética , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Receptores para Leptina/sangue , Receptores para Leptina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...