Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Protoc ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472495

RESUMO

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .

2.
Nat Commun ; 15(1): 1597, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383607

RESUMO

IL-22 is critical for ameliorating obesity-induced metabolic disorders. However, it is unknown where IL-22 acts to mediate these outcomes. Here we examine the importance of tissue-specific IL-22RA1 signaling in mediating long-term high fat diet (HFD) driven metabolic disorders. To do so, we generated intestinal epithelium-, liver-, and white adipose tissue (WAT)-specific Il22ra1 knockout and littermate control mice. Intestinal epithelium- and liver-specific IL-22RA1 signaling upregulated systemic glucose metabolism. Intestinal IL-22RA1 signaling also mediated liver and WAT metabolism in a microbiota-dependent manner. We identified an association between Oscillibacter and elevated WAT inflammation, likely induced by Mmp12 expressing macrophages. Mechanistically, transcription of intestinal lipid metabolism genes is regulated by IL-22 and potentially IL-22-induced IL-18. Lastly, we show that Paneth cell-specific IL-22RA1 signaling, in part, mediates systemic glucose metabolism after HFD. Overall, these results elucidate a key role of intestinal epithelium-specific IL-22RA1 signaling in regulating intestinal metabolism and alleviating systemic obesity-associated disorders.


Assuntos
Fígado , Doenças Metabólicas , Animais , Camundongos , Fígado/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos , Glucose/metabolismo , Doenças Metabólicas/metabolismo , Lipídeos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
3.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37859621

RESUMO

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Dieta Ocidental , Betacelulina/metabolismo , Multiômica , Fibrose , Neoplasias Hepáticas/patologia , Fígado/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Front Nutr ; 10: 1147602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609485

RESUMO

Background: Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods: The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results: Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFß) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion: This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.

5.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36865280

RESUMO

Technological advances have generated tremendous amounts of high-throughput omics data. Integrating data from multiple cohorts and diverse omics types from new and previously published studies can offer a holistic view of a biological system and aid in deciphering its critical players and key mechanisms. In this protocol, we describe how to use Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that can perform meta-analysis of cohorts and detect master regulators among measured parameters that govern pathological or physiological responses of host-microbiota (or any multi-omic data) interactions in a particular condition or disease. TkNA first reconstructs the network that represents a statistical model capturing the complex relationships between the different omics of the biological system. Here, it selects differential features and their per-group correlations by identifying robust and reproducible patterns of fold change direction and sign of correlation across several cohorts. Next, a causality-sensitive metric, statistical thresholds, and a set of topological criteria are used to select the final edges that form the transkingdom network. The second part of the analysis involves interrogating the network. Using the network's local and global topology metrics, it detects nodes that are responsible for control of given subnetwork or control of communication between kingdoms and/or subnetworks. The underlying basis of the TkNA approach involves fundamental principles including laws of causality, graph theory and information theory. Hence, TkNA can be used for causal inference via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run protocol requires very basic familiarity with the Unix command-line environment.

6.
Immunity ; 56(1): 43-57.e10, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630917

RESUMO

There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.


Assuntos
Infecções por Enterobacteriaceae , Fator de Transcrição GATA4 , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Humanos , Camundongos , Actinobacillus , Microbioma Gastrointestinal/imunologia , Fator de Transcrição GATA4/metabolismo , Imunidade nas Mucosas , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestino Delgado , Simbiose
7.
Mol Biol Rep ; 50(3): 2317-2333, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575322

RESUMO

INTRODUCTION: In the present study, we aimed to test the hypothesis that hypercapnia, independently and/or in combination with hypoxia, can activate signaling pathways related to the inhibition of proapoptotic (caspase-dependent and caspase-independent) factors and the induction of antiapoptotic factors in facilitating adaptation to hypoxia/ischemia. MATERIALS AND METHODS: Following exposure to permissive hypercapnia and/or normobaric hypoxia, the degree of apoptosis was evaluated in experimental ischemia models in vivo and in vitro. The percentages of caspase-3, apoptosis-inducing factor (AIF), Bax, and Bcl-2 in astrocytes and neurons derived from male Wistar rats were also calculated. In vitro, cells were subjected to various types of respiratory exposure (hypoxia and/or hypercapnia for 24 or 12 h) as well as further sublethal chemical hypoxia. The percentages of these molecules in nerve cells in the ischemic penumbra of the brain after photothrombotic injury were also calculated. RESULTS: The degree of apoptosis was found to decrease in ischemic penumbra, mostly due to the hypercapnic component. It was also discovered that the levels of caspase-3, AIF, and Bax decreased in this region, whereas the Bcl-2 levels increased following exposure to hypercapnia and hypercapnic hypoxia. CONCLUSIONS: This integrative assessment of the rate of apoptosis/necrosis in astrocyte and neuron cultures shows that the combination of hypercapnia and hypoxia resulted in the maximum neuroprotective effect. The levels of apoptosis mediators in astrocyte and neuron cultures were calculated after modeling chemical hypoxia in vitro. These results show that the exposure models where permissive hypercapnia and normobaric hypoxia were combined also had the most pronounced inhibitory effects on apoptotic signaling pathways.


Assuntos
Hipercapnia , Hipóxia , Ratos , Animais , Masculino , Ratos Wistar , Caspase 3 , Proteína X Associada a bcl-2 , Apoptose , Isquemia , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-35167480

RESUMO

Omics technologies are powerful tools for analyzing patterns in gene expression data for thousands of genes. Due to a number of systematic variations in experiments, the raw gene expression data is often obfuscated by undesirable technical noises. Various normalization techniques were designed in an attempt to remove these non-biological errors prior to any statistical analysis. One of the reasons for normalizing data is the need for recovering the covariance matrix used in gene network analysis. In this paper, we introduce a novel normalization technique, called the covariance shift (C-SHIFT) method. This normalization algorithm uses optimization techniques together with the blessing of dimensionality philosophy and energy minimization hypothesis for covariance matrix recovery under additive noise (in biology, known as the bias). Thus, it is perfectly suited for the analysis of logarithmic gene expression data. Numerical experiments on synthetic data demonstrate the method's advantage over the classical normalization techniques. Namely, the comparison is made with Rank, Quantile, cyclic LOESS (locally estimated scatterplot smoothing), and MAD (median absolute deviation) normalization methods. We also evaluate the performance of C-SHIFT algorithm on real biological data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos
9.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657352

RESUMO

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Microbiota , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Insulina , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos
10.
Nat Med ; 28(3): 545-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228752

RESUMO

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico
11.
Rev Neurosci ; 33(5): 531-554, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34983132

RESUMO

The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


Assuntos
Barreira Hematoencefálica , Encéfalo , Humanos , Neovascularização Patológica , Plasticidade Neuronal , Estudos Prospectivos , Reprodutibilidade dos Testes
12.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
13.
Mol Nutr Food Res ; 65(21): e2100389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496124

RESUMO

SCOPE: The polyphenol xanthohumol (XN) improves dysfunctional glucose and lipid metabolism in diet-induced obesity animal models. Because XN changes intestinal microbiota composition, the study hypothesizes that XN requires the microbiota to mediate its benefits. METHODS AND RESULTS: To test the hypothesis, the study feeds conventional and germ-free male Swiss Webster mice either a low-fat diet (LFD, 10% fat derived calories), a high-fat diet (HFD, 60% fat derived calories), or a high-fat diet supplemented with XN at 60 mg kg-1 body weight per day (HXN) for 10 weeks, and measure parameters of glucose and lipid metabolism. In conventional mice, the study discovers XN supplementation decreases plasma insulin concentrations and improves Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). In germ-free mice, XN supplementation fails to improve these outcomes. Fecal sample 16S rRNA gene sequencing analysis suggests XN supplementation changes microbial composition and dramatically alters the predicted functional capacity of the intestinal microbiota. Furthermore, the intestinal microbiota metabolizes XN into bioactive compounds, including dihydroxanthohumol (DXN), an anti-obesogenic compound with improved bioavailability. CONCLUSION: XN requires the intestinal microbiota to mediate its benefits, which involves complex diet-host-microbiota interactions with changes in both microbial composition and functional capacity. The study results warrant future metagenomic studies which will provide insight into complex microbe-microbe interactions and diet-host-microbiota interactions.


Assuntos
Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Flavonoides , Microbioma Gastrointestinal/genética , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Propiofenonas , RNA Ribossômico 16S
14.
Biochemistry (Mosc) ; 86(6): 746-760, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225598

RESUMO

Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Psicológico/fisiopatologia , Barreira Hematoencefálica/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Estresse Psicológico/metabolismo
15.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925080

RESUMO

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Mitocôndrias/fisiologia , Modelos Neurológicos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Animais , Dano ao DNA , DNA Mitocondrial/metabolismo , Humanos , Técnicas In Vitro , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia , Espécies Reativas de Oxigênio/metabolismo
16.
Science ; 371(6529): 595-602, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542131

RESUMO

Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transplante de Microbiota Fecal , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Humanos , Interleucina-8/imunologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
17.
Nat Commun ; 12(1): 101, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397942

RESUMO

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/microbiologia , Dieta Ocidental , Lactobacillus/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Bilirrubina/sangue , Diabetes Mellitus Tipo 2/genética , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Glucose/metabolismo , Glutationa/sangue , Glutationa/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/ultraestrutura , Reprodutibilidade dos Testes , Transcriptoma/genética
18.
Front Immunol ; 11: 585294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304350

RESUMO

Ectoenzyme and receptor BST-1/CD157 has been considered as a key molecule involved in the regulation of functional activity of cells in various tissues and organs. It is commonly accepted that CD157 catalyzes NAD+ hydrolysis and acts as a component of integrin adhesion receptor complex. Such properties are important for the regulatory role of CD157 in neuronal and glial cells: in addition to recently discovered role in the regulation of emotions, motor functions, and social behavior, CD157 might serve as an important component of innate immune reactions in the central nervous system. Activation of innate immune system in the brain occurs in response to infectious agents as well as in brain injury and neurodegeneration. As an example, in microglial cells, association of CD157 with CD11b/CD18 complex drives reactive gliosis and neuroinflammation evident in brain ischemia, chronic neurodegeneration, and aging. There are various non-substrate ligands of CD157 belonging to the family of extracellular matrix proteins (fibronectin, collagen I, finbrinogen, and laminin) whose activity is required for controlling cell adhesion and migration. Therefore, CD157 could control structural and functional integrity of the blood-brain barrier and barriergenesis. On the other hand, contribution of CD157 to the regulation of brain development is rather possible since in the embryonic brain, CD157 expression is very high, whereas in the adult brain, CD157 is expressed on neural stem cells and, presumably, is involved in the neurogenesis. Besides, CD157 could mediate astrocytes' action on neural stem and progenitor cells within neurogenic niches. In this review we will summarize how CD157 may affect brain plasticity acting as a molecule at the crossroad of neurogenesis, cerebral angiogenesis, and immune regulation.


Assuntos
ADP-Ribosil Ciclase/imunologia , Antígenos CD/imunologia , Encéfalo/imunologia , Encéfalo/fisiopatologia , Plasticidade Neuronal/imunologia , Animais , Proteínas Ligadas por GPI/imunologia , Humanos
19.
Respir Physiol Neurobiol ; 278: 103442, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305676

RESUMO

The mechanisms and signalling pathways of the neuroprotective effect of hypercapnia and its combination with hypoxia are poorly understood. The study aims to test the hypothesis about the potentiating effect of hypercapnia on hypoxia adaptation systems directly related to hypoxia-induced factor 1α (HIF-1α). In this study we assessed HIF-1α content in hippocampal extracts and astrocytes obtained from Wistar male rats exposed to different respiratory conditions (7- or 15-fold of hypoxia and/or hypercapnia). In addition, HIF-1α content in astrocytes was assessed in in vitro model of chemical hypoxia as well as in the cerebral cortex after photothrombotic damage of this brain region. This study indicates increased levels of HIF1α in hippocampal extracts, astrocytes, and in cells of the near-stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. In in vitro study, hypercapnia facilitates the effects of acute chemical hypoxia observed in astrocytes. Thus, hypercapnia does not increase the level of transcription factor HIF-1α. However, the combined effects of hypercapnia and hypoxia in in vitro simulations of acute chemical hypoxia potentiate the accumulation of HIF-1α.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Hipercapnia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Técnicas In Vitro , Neuroproteção , Ratos , Transdução de Sinais
20.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276965

RESUMO

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Feminino , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Salmonella enterica/imunologia , Estreptomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...