Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Top Med Chem ; 12(19): 2059-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23167795

RESUMO

Type 2 diabetes mellitus is characterized by disruption in glycemic homeostasis, involving impaired insulin-induced glucose disposal. For that, reduced glucose transporter GLUT4, encoded by Slc2a4 gene, plays a fundamental role. Conversely, increase in Slc2a4/GLUT4 expression improves glycemic homeostasis. Recent studies have proposed that estradiol is able to modulate Slc2a4 expression, according to distinct effects upon estrogen receptors ESR1/ESR2. We hypothesize that ESR1-agonist effect could stimulate Slc2a4 expression; thus, increasing cellular glucose disposal, which could be beneficial to glycemic control. Differentiated 3T3-L1 adipocytes were treated (24 hours) with selective ESR1- agonist PPT 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, selective ESR1-antagonist MPP 1,3-Bis(4- hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride, and selective ESR2 agonist DPN 2,3-bis(4-Hydroxyphenyl)-propionitrile, with/without 17ß-estradiol (E2). We analyzed Slc2a4 mRNA (real time PCR) and GLUT4 protein (Western blotting) expression, transcriptional activity of the Slc2a4 repressor Nuclear Factor- κB (NF-κB) (electrophoretic mobility shift assay), and cellular glucose disposal (2-deoxi-D-[(3)H]glucose uptake, 2-DG). ESR1-agonist PPT enhanced Slc2a4/GLUT4 expression (~30%) in the absence or presence of 0.1 and 10 nmol/L E2, and decreased the NF-κB binding activity (~50%). Conversely, ESR1-antagonist MPP, together with E2, decreased Slc2a4/GLUT4 expression (20-40%) and increased NF-κB binding activity (~30%). Furthermore, treatment with ESR2- agonist DPN decreased Slc2a4/GLUT4 expression (20-50%). 2-DG uptake was modulated in parallel to that observed in GLUT4 protein. The present results reveal that ESR1 activity enhances, whereas ESR2 activity represses, Slc2a4/GLUT4 expression. These effects are partially mediated by NF-κB, and allow parallel changes in adipocyte glucose disposal. Furthermore, the data provide evidences that ESR1-agonist PPT, as a Slc2a4/GLUT4 enhancer, can be a promising coadjuvant drug for diabetes mellitus therapy.


Assuntos
Adipócitos/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Transportador de Glucose Tipo 4/genética , Glucose/metabolismo , Insulina/farmacologia , Fenóis/farmacologia , Pirazóis/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
2.
Braz J Med Biol Res ; 43(11): 1019-26, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21049241

RESUMO

Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na(+)/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.


Assuntos
Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Transcrição Gênica/genética , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/fisiologia , Transportador 1 de Glucose-Sódio/fisiologia , Transportador 2 de Glucose-Sódio/fisiologia , Transcrição Gênica/fisiologia
3.
Braz. j. med. biol. res ; 43(11): 1019-1026, Nov. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-564139

RESUMO

Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.


Assuntos
Animais , Humanos , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Transportador 1 de Glucose-Sódio/genética , /genética , Transcrição Gênica/genética , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Transportador 1 de Glucose-Sódio/fisiologia , /fisiologia , Transcrição Gênica/fisiologia
4.
Mol Cell Endocrinol ; 305(1-2): 63-70, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19433262

RESUMO

We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1alpha and HNF-3beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1alpha and HNF-3beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1alpha expression and activity to levels of non-diabetic rats, whereas HNF-3beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1alpha and HNF-3beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1alpha and HNF-3beta activity.


Assuntos
Transportador de Glucose Tipo 2/fisiologia , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 3-beta Nuclear de Hepatócito/fisiologia , Rim/metabolismo , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Insulina/farmacologia , Rim/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
5.
Diabetes Obes Metab ; 10(7): 596-600, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18355328

RESUMO

AIM: Glimepiride, a low-potency insulin secretagogue, is as efficient on glycaemic control as other sulphonylureas, suggesting an additional insulin-sensitizer role. The aim of the present study was to confirm the insulin-sensitizer role of glimepiride and to show extra-pancreatic effects of the drug. METHODS: Three-month-old monosodium glutamate (MSG)-induced obese insulin-resistant rats were treated (OG) or not treated (O) with glimepiride for 4 weeks and compared with age-matched non-obese rats (C). Insulin sensitivity in whole body, glucose transporter 4 (GLUT4) protein content, glucose uptake and glycogen synthesis in oxidative skeletal muscle and phospho-glycogen synthase kinase (p-GSK3) and glycogen content in liver were analysed. RESULTS: Insulin sensitivity, analysed by the insulin tolerance test, was 30% lower in O than in C rats (p < 0.05), and OG rats recovered this parameter (p < 0.05). In oxidative muscle, glimepiride increased the GLUT4 protein content (50%, p < 0.001) and recovered the obesity-induced reduction ( approximately 20%) of the in vitro insulin-stimulated glucose uptake and incorporation into glycogen. In liver, glimepiride increased p-GSK3 (p < 0.01) and glycogen (p < 0.05) contents. CONCLUSION: The increased GLUT4 protein expression and glucose utilization in oxidative muscle and the increased insulin sensitivity and glycogen storage in liver evidence the insulin-sensitizer effect of glimepiride, which must be important to enable the glimepiride drug to promote an efficient glycaemic control.


Assuntos
Hipoglicemiantes/farmacologia , Resistência à Insulina , Compostos de Sulfonilureia/farmacologia , Animais , Transportador de Glucose Tipo 4 , Fígado/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
6.
Can J Physiol Pharmacol ; 77(4): 286-92, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10535677

RESUMO

The hypothalamic serotonergic system is involved in the regulation of food ingestion and energy metabolism. Since disturbances of both energy intake and expenditure can contribute to obesity, the objective of the present study was to evaluate the serotonergic response stimulated by food ingestion in two different models of obesity: the hyperphagic Zucker and the hypophagic and hypometabolic, monosodium glutamate (MSG) obese Wistar rat. For this we used microdialysis to examine the release of 5-hydroxytryptamine (serotonin, 5HT) and 5-hydroxyindoleacetic acid (5HIAA) in the lateral hypothalamus. Daily intake of MSG-obese rats was 40% lower while that of Zucker obese rats was 60% higher than that of the respective lean controls. In overnight-fasted animals, 20-min microdialysate samples were collected before (basal release) and during a 2-h period of access to a balanced palatable food mash. The animals began to eat during the first 20 min of food access, and food consumption was similar among the four groups in all six individual 20-min periods recorded. Ingestion of food increased 5HT release in all groups. In MSG-obese and lean Wistar rats, 5HT levels were similarly elevated during the whole experimental period. In the Zucker strain, 5HT increments of basal release tended to be higher in obese than in lean rats at 20 and 40 min, and a significantly higher increment was observed at 60 min after food access (40 and 135% for lean and obese, respectively). The area under the curve relating serotonin levels to the 120 min of food availability was significantly higher in Zucker obese (246.7 +/- 23.3) than MSG-obese (152.7 +/- 13.4), lean Wistar (151.9 +/- 11.1), and lean Zucker (173.5 +/- 24.0) rats. The present observation, of a food-induced serotonin release in the lateral hypothalamus of lean Wistar and Zucker rats, evidences that 5HT in the lateral hypothalamus is important in the normal response to feeding. In obese animals, the serotonin response was similar to (in the hypophagic-hypometabolic MSG model) or even higher than (in the hyperphagic Zucker model) that seen in the respective lean controls. This result indicates that the energy homeostasis disturbances of both these obesity models may not be ascribed to an impairment of the acute lateral hypothalamic serotonin response to a dietary stimulus.


Assuntos
Ingestão de Alimentos , Região Hipotalâmica Lateral/metabolismo , Microdiálise , Obesidade/metabolismo , Serotonina/metabolismo , Animais , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Ratos , Ratos Wistar , Ratos Zucker , Glutamato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...