Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 131(2): 313-322, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36567503

RESUMO

BACKGROUND AND AIMS: To date, studies on terrestrial plant ecology and evolution have focused primarily on the trade-off patterns in the allocation of metabolic production to roots and shoots in individual plants and the scaling of whole-plant respiration. However, few empirical studies have investigated the root : shoot ratio by considering scaling whole-plant respiration at various sizes throughout ontogeny. METHODS: Here, using a whole-plant chamber system, we measured the respiration rates, fresh mass and surface area of entire roots and shoots from 377 Fagus crenata individuals, from germinating seeds to mature trees, collected from five different Japanese provenances. Non-linear regression analysis was performed for scaling of root and shoot respiration, fresh mass and surface area with body size. KEY RESULTS: Whole-plant respiration increased rapidly in germinating seeds. In the seedling to mature tree size range, the scaling of whole-plant respiration to whole-plant fresh mass was expressed as a linear trend on the log-log coordinates (exponent slightly greater than 0.75). In the same body size range, root and shoot respiration vs. whole-plant fresh mass were modelled by upward-convex (exponent decreased from 2.35 to 0.638) and downward-convex trends (exponent increased from -0.918 to 0.864), respectively. The root fraction in whole-plant respiration, fresh mass and surface area shifted continuously throughout ontogeny, increasing in smaller seedlings during early growth stages and decreasing in larger trees. CONCLUSIONS: Our results suggest a gradual shift in allocation priorities of metabolic energy from roots in seedlings to shoots in mature trees, providing insights into how roots contribute to shoot and whole-plant growth during ontogeny. The models of root : shoot ratio in relation to whole-plant physiology could be applied in tree growth modelling, and in linking the different levels of ecological phenomena, from individuals to ecosystems.


Assuntos
Fagus , Brotos de Planta , Ecossistema , Plântula/fisiologia , Árvores/fisiologia , Respiração , Raízes de Plantas
2.
PLoS One ; 16(9): e0257690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591865

RESUMO

Aucuba japonica Thunb. is an evergreen understory shrub that grows naturally at a mine site. The mine soil contains high concentrations of heavy metals, and A. japonica appears to maintain detoxification mechanisms against heavy metals in the study site's understory. This study aimed to investigate the heavy metal tolerance mechanisms in A. japonica, considering the possible roles of arbuscular mycorrhizal and root-endophytic fungi. We conducted fieldwork in summer (canopy-foliation season) and winter (canopy-defoliation season) to measure the heavy metal concentrations in leaves, branches, and roots and analyze possible detoxicants in the roots. The infection rates of arbuscular mycorrhizal and root-endophytic fungi were evaluated via microscopic observation, and heavy metal (Zn) localization in A. japonica roots was observed using confocal laser scanning microscopy. Field analysis showed that A. japonica accumulated excessive Zn and produced aucubin and citric acid in the roots in both summer and winter. Zn localization observations clarified that Zn was distributed in thickened epidermal and cortical cell walls, suggesting that the cell walls functioned as Zn deposition sites, reducing Zn toxicity. It was further clarified that Zn was contained within cortical cells, indicating that Zn might be detoxified by aucubin and citric acid. Arbuscular mycorrhizal and root-endophytic fungi within cortical cells adsorbed Zn on fungal cell walls, indicating that these fungi would reduce Zn content within root cells and might alleviate Zn toxicity. Our results indicated that A. japonica would maintain Zn tolerance in both summer and winter via Zn immobilization in the cell walls and production of aucubin and citric acid, and that arbuscular mycorrhizal and root-endophytic fungi might play important roles in the Zn tolerance of A. japonica.


Assuntos
Glucosídeos Iridoides/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Metais Pesados/química , Zinco/química , Adsorção , Biodegradação Ambiental , Parede Celular/química , Ácido Cítrico/química , Japão , Magnoliopsida/metabolismo , Micélio/química , Fotossíntese
3.
J Plant Res ; 134(5): 989-997, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115233

RESUMO

Both Moso bamboo (Phyllostachys pubescens) and tree forests have a large biomass; they are considered to play an important role in ecosystem carbon budgets. The scaling relationship between individual whole-shoot (i.e., aboveground parts) respiration and whole-shoot mass provides a clue for comparing the carbon budgets of Moso bamboo and tree forests. However, nobody has empirically demonstrated whether there is a difference between these forest types in the whole-shoot scaling relationship. We developed whole-shoot chambers and measured the shoot respiration of 58 individual mature bamboo shoots from the smallest to the largest in a Moso bamboo forest, and then compared them with that of 254 tree shoots previously measured. For 30 bamboo shoots, we measured the respiration rate of leaves, branches, and culms. We found that the scaling exponent of whole-shoot respiration of bamboo fitted by a simple power function on a log-log scale was 0.843 (95 % CI 0.797-0.885), which was consistent with that of trees, 0.826 (95 % CI 0.799-0.851), but higher than 3/4, the value typifying the Kleiber's rule. The respiration rates of leaves, branches, and culms at the whole-shoot level were proportional to their mass, revealing a constant mean mass-specific respiration of 1.19, 0.224, and 0.0978 µmol CO2 kg- 1 s- 1, respectively. These constant values suggest common traits of organs among physiologically integrated ramets within a genet. Additionally, the larger the shoots, the smaller the allocation of organ mass to the metabolically active leaves, and the larger the allocation to the metabolically inactive culms. Therefore, these shifts in shoot-mass partitioning to leaves and culms caused a negative metabolic scaling of Moso bamboo shoots. The observed convergent metabolic scaling of Moso bamboo and trees may facilitate comparisons of the ecosystem carbon budgets of Moso bamboo and tree forests.


Assuntos
Ecossistema , Árvores , Florestas , Poaceae , Respiração
4.
R Soc Open Sci ; 2(10): 150330, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26587246

RESUMO

Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers.

5.
Sci Rep ; 5: 15376, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26483077

RESUMO

Most terrestrial plant communities exhibit relatively high species diversity and many competitive species are ubiquitous. Many theoretical studies have been carried out to investigate the coexistence of a few competitive species and in most cases they suggest competitive exclusion. Theoretical studies have revealed that coexistence of even three or four species can be extremely difficult. It has been suggested that the coexistence of many species has been achieved by the fine differences in suitable microhabitats for each species, attributing to niche-separation. So far there is no explicit demonstration of such a coexistence in mathematical and simulation studies. Here we built a simple lattice Lotka-Volterra model of competition by incorporating the minute differences of suitable microhabitats for many species. By applying the site variations in species-specific settlement rates of a seedling, we achieved the coexistence of more than 10 species. This result indicates that competition between many species is avoided by the spatial variations in species-specific microhabitats. Our results demonstrate that coexistence of many species becomes possible by the minute differences in microhabitats. This mechanism should be applicable to many vegetation types, such as temperate forests and grasslands.


Assuntos
Biodiversidade , Ecossistema , Plantas , Modelos Teóricos , Dinâmica Populacional
6.
Proc Natl Acad Sci U S A ; 107(4): 1447-51, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080600

RESUMO

The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.


Assuntos
Biomassa , Botânica/métodos , Gases/análise , Transpiração Vegetal , Plântula/química , Árvores/química , Gases/metabolismo , Plântula/fisiologia , Árvores/fisiologia
7.
J Chem Ecol ; 33(12): 2254-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18026796

RESUMO

Hinoki-asunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino) is a tree endemic in Japan whose seeds produce several terpenoids. We hypothesized that antifungal compounds in seeds might select for fungi on the root surfaces of T. dolabrata var. hondai seedlings. We examined seed and soil fungi, their sensitivity to methanol extracts of the seeds, the fungi on root surfaces of seedlings grown in Kanuma pumice (a model mineral soil) and nursery soil, and the frequency at which each fungus was detected on the seedling root surface. We calculated correlation coefficients between fungal detection frequency on root surfaces and fungal sensitivity to seed extracts. We also isolated from the seeds the antifungal compound totarol that selected for fungi on root surfaces. Species of Alternaria, Cladosporium, Pestalotiopsis, and Phomopsis were the most frequently isolated fungi from seeds. Mortierella and Mucor were the dominant fungi isolated from Kanuma pumice, whereas Umbelopsis and Trichoderma were the main fungi isolated from nursery soil. Alternaria, Cladosporium, Mortierella, Pestalotiopsis, and Phomopsis were the dominant fungi isolated from root surfaces of seedlings grown in Kanuma pumice, and Alternaria, Cladosporium, Pestalotiopsis, Phomopsis, and Trichoderma were the main root-surface fungi isolated from seedlings grown in nursery soil. The fungal detection frequencies on root surfaces in both soils were significantly and negatively correlated with fungal sensitivity to the seed extract. A similar correlation was found between the fungal detection frequency on root surfaces and fungal sensitivity to totarol. We conclude that totarol is one factor that selects for fungi on root surfaces of T. dolabrata var. hondai in the early growth stage.


Assuntos
Antifúngicos/farmacologia , Diterpenos/farmacologia , Fungos/efeitos dos fármacos , Raízes de Plantas/microbiologia , Sementes/química , Árvores/química , Abietanos , Antifúngicos/isolamento & purificação , Diterpenos/isolamento & purificação , Fungos/classificação , Árvores/embriologia
8.
Mycorrhiza ; 15(1): 17-23, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14716537

RESUMO

Ectomycorrhizal fungi can produce antifungal compounds in vitro as well as in symbiosis with the host plant that can reduce root diseases. The objective of this study was to isolate antifungal compounds from culture filtrate of Paxillus sp. 60/92, which can form mycorrhizas with Picea glehnii seedlings. Culture filtrate of Paxillus sp. 60/92 showed antifungal activity against Pythium vexans at pH 3-4 but not at pH 5-10, although sterile MMN-b liquid medium (pH 3-10) did not show antifungal activity. Upon separation of antifungal compounds in the culture filtrate, antifungal activity was detected in the organic acid and water-soluble phenolics fractions adjusted to pH 3. Although antifungal activity of individual fractions was lower than that of the culture filtrate, a mixture of these fractions showed antifungal activity similar to that of the culture filtrate. Furthermore, antifungal activity of oxalic acid, which is known to be produced by Paxillus involutus, was increased by mixing with the water-soluble phenolic fraction. Our findings indicate that Paxillus sp. 60/92 produces organic acids and water-soluble phenolics that together show antifungal activity at pH 3-4 against P. vexans.


Assuntos
Basidiomycota/metabolismo , Micorrizas/metabolismo , Pythium/fisiologia , Antifúngicos/metabolismo , Basidiomycota/fisiologia , Concentração de Íons de Hidrogênio , Micorrizas/fisiologia , Fenóis/metabolismo , Picea/microbiologia , Raízes de Plantas/microbiologia
9.
Oecologia ; 110(2): 253-261, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307433

RESUMO

The vertical profile of stable carbon isotope ratios (δ13C) of leaves was analyzed for 13 tree species in a cool-temperate deciduous forest in Japan. The vertical distribution of long-term averaged δ13C in atmospheric CO2 (δa) was estimated from δ13C of dry matter from NADP-malic enzyme type C4 plant (Zea mays L. var. saccharata Sturt.) grown at a tower in the forest for 32␣days, assuming constant Δ value (3.3‰) in Z. mays against height. The δa value obtained from δ13C in Z.␣mays was lowest at the forest floor (-9.30 ± 0.03‰), increased with height, and was almost constant above 10␣m (-7.14 ± 0.14‰). Then leaf Δ values for the tree species were calculated from tree leaf δ13 C andδa. Mean leaf Δ values for the three tall deciduous species (Fraxinus mandshurica, Ulmus davidiana, and Alnus hirsuta) were significantly different among three height levels in the forest: 23.1 ± 0.7‰ at the forest floor (understory), 21.4 ± 0.5‰ in lower canopy, and 20.5 ± 0.3‰ in upper canopy. The true difference in tree leaf Δ among the forest height levels might be even greater, because Δ in Z. mays probably increased with shading by up to ∼‰. The difference in tree leaf Δ among the forest height levels would be mainly due to decreasing intercellular CO2 (C i) with the increase in irradiance. Potential assimilation rate for the three tree species probably increased with height, since leaf nitrogen content on an area basis for these species also increased with height. However, the increase in stomatal conductance for these tree species would fail to meet the increase in potential assimilation rate, which might lead to increasing the degree of stomatal limitation in photosynthesis with height.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...