Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(25): 6028-6048, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38876465

RESUMO

GENeralized-Ensemble SImulation System (GENESIS) is a molecular dynamics (MD) software developed to simulate the conformational dynamics of a single biomolecule, as well as molecular interactions in large biomolecular assemblies and between multiple biomolecules in cellular environments. To achieve the latter purpose, the earlier versions of GENESIS emphasized high performance in atomistic MD simulations on massively parallel supercomputers, with or without graphics processing units (GPUs). Here, we implemented multiscale MD simulations that include atomistic, coarse-grained, and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. They demonstrate high performance and are integrated with enhanced conformational sampling algorithms and free-energy calculations without using external programs except for the QM programs. In this article, we review new functions, molecular models, and other essential features in GENESIS version 2.1 and discuss ongoing developments for future releases.

2.
PLoS Biol ; 22(4): e3002601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656967

RESUMO

Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving a membrane protein YeeE (TsuA) in Escherichia coli was characterized. YeeE-like proteins are conserved in some bacteria, archaea, and eukaryotes. However, the precise function of YeeE, along with its potential partner protein in the thiosulfate ion uptake pathway, remained unclear. Here, we assessed selective thiosulfate transport via Spirochaeta thermophila YeeE in vitro and characterized E. coli YeeD (TsuB) as an adjacent and essential protein for YeeE-mediated thiosulfate uptake in vivo. We further showed that S. thermophila YeeD possesses thiosulfate decomposition activity and that a conserved cysteine in YeeD was modified to several forms in the presence of thiosulfate. Finally, the crystal structures of S. thermophila YeeE-YeeD fusion proteins at 3.34-Å and 2.60-Å resolutions revealed their interactions. The association was evaluated by a binding assay using purified S. thermophila YeeE and YeeD. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.


Assuntos
Escherichia coli , Sulfurtransferases , Tiossulfatos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Cristalografia por Raios X , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiossulfatos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
J Comput Chem ; 45(8): 498-505, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37966727

RESUMO

The rapid increase in computational power with the latest supercomputers has enabled atomistic molecular dynamics (MDs) simulations of biomolecules in biological membrane, cytoplasm, and other cellular environments. These environments often contain a million or more atoms to be simulated simultaneously. Therefore, their trajectory analyses involve heavy computations that can become a bottleneck in the computational studies. Spatial decomposition analysis (SPANA) is a set of analysis tools in the Generalized-Ensemble Simulation System (GENESIS) software package that can carry out MD trajectory analyses of large-scale biological simulations using multiple CPU cores in parallel. SPANA applies the spatial decomposition of a large biological system to distribute structural and dynamical analyses into individual CPU cores, which reduces the computational time and the memory size, significantly. SPANA opens new possibilities for detailed atomistic analyses of biomacromolecules as well as solvent water molecules, ions, and metabolites in MD simulation trajectories of very large biological systems containing more than millions of atoms in cellular environments.


Assuntos
Simulação de Dinâmica Molecular , Software , Computadores
4.
Structure ; 30(8): 1088-1097.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660157

RESUMO

The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Lipídeos , Peptidoglicano/química , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
5.
Elife ; 112022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323112

RESUMO

Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-electron microscopy structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down-to-one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.


Assuntos
Glicoproteína da Espícula de Coronavírus , COVID-19 , Microscopia Crioeletrônica , Humanos , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
6.
Curr Opin Struct Biol ; 72: 88-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34592697

RESUMO

Recent advances in atomistic molecular dynamics (MD) simulations of biomolecules allow us to explore their conformational spaces widely, observing large-scale conformational fluctuations or transitions between distinct structures. To reproduce or refine experimental data using MD simulations, structure ensembles, which are characterized by multiple structures and their statistical weights on the rugged free-energy landscapes, are often used. Here, we summarize weight average approaches for various experimental measurements. Weight average approaches are now applied to hybrid quantum mechanics/molecular mechanics MD simulations to predict fast vibrational motions in a protein with a high accuracy for better understanding of molecular functions from atomic structures.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica
7.
J Chem Theory Comput ; 17(8): 5312-5321, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34278793

RESUMO

In recent years, molecular dynamics (MD) simulations with larger time steps have been performed with the hydrogen-mass-repartitioning (HMR) scheme, where the mass of each hydrogen atom is increased to reduce high-frequency motion while the mass of a non-hydrogen atom bonded to a hydrogen atom is decreased to keep the total molecular mass unchanged. Here, we optimize the scaling factors in HMR and combine them with previously developed accurate temperature/pressure evaluations. The heterogeneous HMR scaling factors are useful to avoid the structural instability of amino acid residues having a five- or six-membered ring in MD simulations with larger time steps. It also reproduces kinetic properties, namely translational and rotational diffusions, if the HMR scaling factors are applied to only solute molecules. The integration scheme is tested for biological systems that include soluble/membrane proteins and lipid bilayers for about 200 µs MD simulations in total and give consistent results in MD simulations with both a small time step of 2.0 fs and a large, multiple time step integration with time steps of 3.5 fs (for fast motions) and 7.0 fs (for slower motions). We also confirm that the multiple time step integration scheme used in this study provides more accurate energy conservations than the RESPA/C1 and is comparable to the RESPA/C2 in NAMD. In summary, the current integration scheme combining the optimized HMR with accurate temperature/pressure evaluations can provide stable and reliable MD trajectories with a larger time step, which are computationally more than 2-fold efficient compared to the conventional methods.


Assuntos
Hidrogênio/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Cinética , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Pressão , Temperatura , Termodinâmica
8.
J Chem Inf Model ; 61(7): 3516-3528, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34142833

RESUMO

Structural modeling of proteins from cryo-electron microscopy (cryo-EM) density maps is one of the challenging issues in structural biology. De novo modeling combined with flexible fitting refinement (FFR) has been widely used to build a structure of new proteins. In de novo prediction, artificial conformations containing local structural errors such as chirality errors, cis peptide bonds, and ring penetrations are frequently generated and cannot be easily removed in the subsequent FFR. Moreover, refinement can be significantly suppressed due to the low mobility of atoms inside the protein. To overcome these problems, we propose an efficient scheme for FFR, in which the local structural errors are fixed first, followed by FFR using an iterative simulated annealing (SA) molecular dynamics protocol with the united atom (UA) model in an implicit solvent model; we call this scheme "SAUA-FFR". The best model is selected from multiple flexible fitting runs with various biasing force constants to reduce overfitting. We apply our scheme to the decoys obtained from MAINMAST and demonstrate an improvement of the best model of eight selected proteins in terms of the root-mean-square deviation, MolProbity score, and RWplus score compared to the original scheme of MAINMAST. Fixing the local structural errors can enhance the formation of secondary structures, and the UA model enables progressive refinement compared to the all-atom model owing to its high mobility in the implicit solvent. The SAUA-FFR scheme realizes efficient and accurate protein structure modeling from medium-resolution maps with less overfitting.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Microscopia Crioeletrônica , Conformação Proteica
9.
Front Mol Biosci ; 8: 631854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842541

RESUMO

Structure determination using cryo-electron microscopy (cryo-EM) medium-resolution density maps is often facilitated by flexible fitting. Avoiding overfitting, adjusting force constants driving the structure to the density map, and emulating complex conformational transitions are major concerns in the fitting. To address them, we develop a new method based on a three-step multi-scale protocol. First, flexible fitting molecular dynamics (MD) simulations with coarse-grained structure-based force field and replica-exchange scheme between different force constants replicas are performed. Second, fitted Cα atom positions guide the all-atom structure in targeted MD. Finally, the all-atom flexible fitting refinement in implicit solvent adjusts the positions of the side chains in the density map. Final models obtained via the multi-scale protocol are significantly better resolved and more reliable in comparison with long all-atom flexible fitting simulations. The protocol is useful for multi-domain systems with intricate structural transitions as it preserves the secondary structure of single domains.

10.
Biophys J ; 120(6): 1060-1071, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33484712

RESUMO

The ongoing COVID-19 pandemic caused by the new coronavirus, SARS-CoV-2, calls for urgent developments of vaccines and antiviral drugs. The spike protein of SARS-CoV-2 (S-protein), which consists of trimeric polypeptide chains with glycosylated residues on the surface, triggers the virus entry into a host cell. Extensive structural and functional studies on this protein have rapidly advanced our understanding of the S-protein structure at atomic resolutions, although most of these structural studies overlook the effect of glycans attached to the S-protein on the conformational stability and functional motions between the inactive down and active up forms. Here, we performed all-atom molecular dynamics simulations of both down and up forms of a fully glycosylated S-protein in solution as well as targeted molecular dynamics simulations between them to elucidate key interdomain interactions for stabilizing each form and inducing the large-scale conformational transitions. The residue-level interaction analysis of the simulation trajectories detects distinct amino acid residues and N-glycans as determinants on conformational stability of each form. During the conformational transitions between them, interdomain interactions mediated by glycosylated residues are switched to play key roles on the stabilization of another form. Electrostatic interactions, as well as hydrogen bonds between the three receptor binding domains, work as driving forces to initiate the conformational transitions toward the active form. This study sheds light on the mechanisms underlying conformational stability and functional motions of the S-protein, which are relevant for vaccine and antiviral drug developments.


Assuntos
Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/química , Ligação de Hidrogênio , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Soluções , Eletricidade Estática
12.
Nat Struct Mol Biol ; 27(12): 1185-1193, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106658

RESUMO

The molecular function of Atg9, the sole transmembrane protein in the autophagosome-forming machinery, remains unknown. Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Here we report that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 reveals a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. These results suggest that phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion.


Assuntos
Autofagossomos/química , Proteínas Relacionadas à Autofagia/química , Proteínas de Membrana/química , Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Vermelha Fluorescente
14.
J Chem Theory Comput ; 16(1): 711-724, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31765139

RESUMO

Surfactant micelles are often utilized as membrane mimetics for structure determination and functional analysis of membrane proteins. The curved-surface effects of the micelle can perturb membrane protein structure. However, it is difficult to assess such effects and membrane mimetic artifacts by experimental and theoretical methods. Here, we propose an implicit micelle model (IMIC) to be used in molecular dynamics (MD) simulations of membrane proteins. IMIC is an extension of the IMM1 implicit membrane model and additionally introduces a superellipsoid approximation to represent the curved-surface effects. Most of the IMIC parameters are obtained from all-atom explicit solvent MD simulations of 12 membrane proteins in various micelles. The HIV envelope protein gp41, M13 major coat protein gp8, and amyloid precursor protein (APP) dimer are simulated via MD simulations with IMIC. These simulations clearly show how the micelle influences membrane protein structures compared to the bilayer environments. The MD simulations with IMIC provide reliable membrane protein structures in various micelle environments quickly with smaller computational cost than that for an explicit solvent/micelle model.


Assuntos
Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Micelas , Modelos Moleculares , Conformação Proteica , Termodinâmica , Água/química
15.
Structure ; 27(1): 161-174.e3, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30344106

RESUMO

Flexible fitting is a powerful technique to build the 3D structures of biomolecules from cryoelectron microscopy (cryo-EM) density maps. One popular method is a cross-correlation coefficient-based approach, where the molecular dynamics (MD) simulation is carried out with the biasing potential that includes the cross-correlation coefficient between the experimental and simulated density maps. Here, we propose efficient parallelization schemes for the calculation of the cross-correlation coefficient to accelerate flexible fitting. Our schemes are tested for small, medium, and large biomolecules using CPU and hybrid CPU + GPU architectures. The scheme for the atomic decomposition MD is suitable for small proteins such as Ca2+-ATPase with the all-atom Go model, while that for the domain decomposition MD is better for larger systems such as ribosome with the all-atom Go or the all-atom explicit solvent models. Our methods allow flexible fitting for various biomolecules with reasonable computational cost. This approach also connects high-resolution structure refinements with investigation of protein structure-function relationship.


Assuntos
Microscopia Crioeletrônica/métodos , Simulação de Dinâmica Molecular , ATPases Transportadoras de Cálcio/química , Microscopia Crioeletrônica/normas , Limite de Detecção
16.
Nucleic Acids Res ; 46(19): 9960-9970, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239867

RESUMO

A synthetic riboswitch N1, inserted into the 5'-untranslated mRNA region of yeast, regulates gene expression upon binding ribostamycin and neomycin. Interestingly, a similar aminoglycoside, paromomycin, differing from neomycin by only one substituent (amino versus hydroxyl), also binds to the N1 riboswitch, but without affecting gene expression, despite NMR evidence that the N1 riboswitch binds all aminoglycosides in a similar way. Here, to explore the details of structural dynamics of the aminoglycoside-N1 riboswitch complexes, we applied all-atom molecular dynamics (MD) and temperature replica-exchange MD simulations in explicit solvent. Indeed, we found that ribostamycin and neomycin affect riboswitch dynamics similarly but paromomycin allows for more flexibility because its complex lacks the contact between the distinctive 6' hydroxyl group and the G9 phosphate. Instead, a transient hydrogen bond of 6'-OH with A17 is formed, which partially diminishes interactions between the bulge and apical loop of the riboswitch, likely contributing to riboswitch inactivity. In many ways, the paromomycin complex mimics the conformations, interactions, and Na+ distribution of the free riboswitch. The MD-derived interaction network helps understand why riboswitch activity depends on aminoglycoside type, whereas for another aminoglycoside-binding site, aminoacyl-tRNA site in 16S rRNA, activity is not discriminatory.


Assuntos
Aminoglicosídeos/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/efeitos dos fármacos , Sítios de Ligação , Conformação Molecular/efeitos dos fármacos , Neomicina/farmacologia , Paromomicina/farmacologia , Ribostamicina/farmacologia , Riboswitch/fisiologia
17.
Proc Natl Acad Sci U S A ; 114(37): 9888-9893, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847930

RESUMO

Nitric oxide (NO) plays diverse and significant roles in biological processes despite its cytotoxicity, raising the question of how biological systems control the action of NO to minimize its cytotoxicity in cells. As a great example of such a system, we found a possibility that NO-generating nitrite reductase (NiR) forms a complex with NO-decomposing membrane-integrated NO reductase (NOR) to efficiently capture NO immediately after its production by NiR in anaerobic nitrate respiration called denitrification. The 3.2-Å resolution structure of the complex of one NiR functional homodimer and two NOR molecules provides an idea of how these enzymes interact in cells, while the structure may not reflect the one in cells due to the membrane topology. Subsequent all-atom molecular dynamics (MD) simulations of the enzyme complex model in a membrane and structure-guided mutagenesis suggested that a few interenzyme salt bridges and coulombic interactions of NiR with the membrane could stabilize the complex of one NiR homodimer and one NOR molecule and contribute to rapid NO decomposition in cells. The MD trajectories of the NO diffusion in the NiR:NOR complex with the membrane showed that, as a plausible NO transfer mechanism, NO released from NiR rapidly migrates into the membrane, then binds to NOR. These results help us understand the mechanism of the cellular control of the action of cytotoxic NO.


Assuntos
Anaerobiose/fisiologia , Desnitrificação/fisiologia , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Oxirredutases/metabolismo , Pseudomonas aeruginosa/metabolismo , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Humanos , Simulação de Dinâmica Molecular , Nitrito Redutases/química , Oxirredutases/química , Estrutura Secundária de Proteína
18.
J Comput Chem ; 38(25): 2193-2206, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28718930

RESUMO

GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc.

19.
Cell Rep ; 19(5): 895-901, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467902

RESUMO

Protein secretion mediated by SecYEG translocon and SecA ATPase is enhanced by membrane-embedded SecDF by using proton motive force. A previous structural study of SecDF indicated that it comprises 12 transmembrane helices that can conduct protons and three periplasmic domains, which form at least two characterized transition states, termed the F and I forms. We report the structures of full-length SecDF in I form at 2.6- to 2.8-Å resolution. The structures revealed that SecDF in I form can generate a tunnel that penetrates the transmembrane region and functions as a proton pathway regulated by a conserved Asp residue of the transmembrane region. In one crystal structure, periplasmic cavity interacts with a molecule, potentially polyethylene glycol, which may mimic a substrate peptide. This study provides structural insights into the Sec protein translocation that allows future analyses to develop a more detailed working model for SecDF.


Assuntos
Proteínas de Bactérias/química , Prótons , Canais de Translocação SEC/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Deinococcus/química , Glicolipídeos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
20.
J Chem Theory Comput ; 13(6): 3049-3059, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28475346

RESUMO

A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...