Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(12): 1737-1744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044132

RESUMO

Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.


Assuntos
Calcinose , Pseudoxantoma Elástico , Humanos , Feminino , Masculino , Camundongos , Animais , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/complicações , Pseudoxantoma Elástico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Calcinose/complicações , Calcinose/genética , Calcinose/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Difosfonatos
3.
J Pharm Pharmacol ; 73(7): 947-955, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33882129

RESUMO

OBJECTIVE: Ectopic calcification such as vascular calcification, involves the formation of calciprotein particle (CPP), that is, colloidal particle of calcium phosphate bound to serum protein. In this study, a novel parameter for CPP formation was introduced, thereby the effect of FYB-931, a bisphosphonate compound was evaluated. METHODS: CPP formation in rat serum was assessed by the area under the curve (AUC) of the change in absorbance over time, and the commonly used T50, as indices. In vivo, the rats were treated with vitamin D3 to induce vascular calcification and then intravenously administered FYB-931 or etidronate thrice weekly for 2 weeks. KEY FINDINGS: In vitro, FYB-931 was the most potent inhibitor of CPP formation and it also inhibited the maximum response of CPP formation at higher concentrations. The AUC of the change in absorbance provided obvious dose-dependency, while T50 did not. FYB-931 dose-dependently prevented aortic calcification in vivo as well as CPP formation ex vivo more potently than etidronate. AUC showed a stronger correlation with the degree of aortic calcification than T50. CONCLUSIONS: The AUC in CPP formation can be an alternative parameter that reflects calcification. Based on the findings, FYB-931 has potential as an anti-calcifying agent.


Assuntos
Fosfatos de Cálcio , Difosfonatos/farmacologia , Calcificação Vascular/tratamento farmacológico , Animais , Área Sob a Curva , Fosfatos de Cálcio/sangue , Fosfatos de Cálcio/metabolismo , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Coloides , Relação Dose-Resposta a Droga , Ácido Etidrônico/farmacologia , Ratos , Resultado do Tratamento , Calcificação Vascular/metabolismo
4.
Plant Cell Rep ; 38(2): 161-172, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30506369

RESUMO

KEY MESSAGE: A key module, secretory component (SC), was efficiently expressed in Arabidopsis thaliana. The plant-based SC and immunoglobulin A of animal or plant origin formed secretory IgA that maintains antigen-binding activity. Plant expression systems are suitable for scalable and cost-effective production of biologics. Secretory immunoglobulin A (SIgA) will be useful as a therapeutic antibody against mucosal pathogens. SIgA is equipped with a secretory component (SC), which assists the performance of SIgA on the mucosal surface. Here we produced SC using a plant expression system and formed SIgA with dimeric IgAs produced by mouse cells as well as by whole plants. To increase the expression level, an endoplasmic reticulum retention signal peptide, KDEL (Lys-Asp-Glu-Leu), was added to mouse SC (SC-KDEL). The SC-KDEL cDNA was inserted into a binary vector with a translational enhancer and an efficient terminator. The SC-KDEL transgenic Arabidopsis thaliana produced SC-KDEL at the level of 2.7% of total leaf proteins. In vitro reaction of the plant-derived SC-KDEL with mouse dimeric monoclonal IgAs resulted in the formation of SIgA. When reacted with Shiga toxin 1 (Stx1)-specific ones, the antigen-binding activity was maintained. When an A. thaliana plant expressing SC-KDEL was crossed with one expressing dimeric IgA specific for Stx1, the plant-based SIgA exhibited antigen-binding activity. Leaf extracts of the crossbred transgenic plants neutralized Stx1 cytotoxicity against Stx1-sensitive cells. These results suggest that transgenic plants expressing SC-KDEL will provide a versatile means of SIgA production.


Assuntos
Arabidopsis/metabolismo , Imunoglobulina A Secretora/metabolismo , Multimerização Proteica , Componente Secretório/metabolismo , Toxina Shiga I/metabolismo , Animais , Arabidopsis/genética , Cruzamentos Genéticos , DNA Bacteriano/genética , Homozigoto , Camundongos , Oligopeptídeos , Plantas Geneticamente Modificadas , Sinais Direcionadores de Proteínas
5.
Sci Rep ; 7: 45843, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368034

RESUMO

Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.


Assuntos
Anticorpos Monoclonais/imunologia , Arabidopsis/genética , Escherichia coli O157/imunologia , Imunoglobulina A/farmacologia , Infecções/tratamento farmacológico , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/farmacologia , Arabidopsis/imunologia , Células CACO-2 , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/patogenicidade , Humanos , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Imunoterapia , Infecções/imunologia , Infecções/microbiologia , Camundongos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...