Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311827, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381114

RESUMO

The expeditious growth of wearable electronic devices has boomed the development of versatile smart textiles for personal health-related applications. In practice, integrated high-performance systems still face challenges of compromised breathability, high cost, and complicated manufacturing processes. Herein, a breathable fibrous membrane with dual-driven heating and electromagnetic interference (EMI) shielding performance is developed through a facile process of electrospinning followed by targeted conformal deposition. The approach constructs a robust hierarchically coaxial heterostructure consisting of elastic polymers as supportive "core" and dual-conductive components of polypyrrole and copper sulfide (CuS) nanosheets as continuous "sheath" at the fiber level. The CuS nanosheets with metal-like electrical conductivity demonstrate the promising potential to substitute the expensive conductive nano-materials with a complex fabricating process. The as-prepared fibrous membrane exhibits high electrical conductivity (70.38 S cm-1 ), exceptional active heating effects, including solar heating (saturation temperature of 69.7 °C at 1 sun) and Joule heating (75.2 °C at 2.9 V), and impressive EMI shielding performance (50.11 dB in the X-band), coupled with favorable air permeability (161.4 mm s-1 at 200 Pa) and efficient water vapor transmittance (118.9 g m-2 h). This work opens up a new avenue to fabricate versatile wearable devices for personal thermal management and health protection.

2.
Chem Eng J ; 466: 143330, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37193347

RESUMO

In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g-1 under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m-2 h-1 under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m-2 h-1 is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.

3.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235897

RESUMO

The quantitative relationship between the fraction of UV exposure energy and the retention fraction of tensile strength was investigated on the m-Aramid/p-Aramid blend ratio of spun yarn. An exponential equation to calculate tensile strength from an arbitrary UV exposure energy is evaluated for yarns and fabrics. The spun yarns were exposed to UV light using a xenon-arc weathering meter. The retention fraction of tensile strength decreased exponentially with increasing the fraction of UV exposure energy. Curve fitting of the retention fraction of tensile strength to the fraction of UV exposure energy revealed two groups of degradation coefficients based on the blending ratio of m-Aramid/p-Aramid. The correlation between the degradation coefficients (αy and αf) of spun yarn and fabrics can be linearly regressed. The constant of proportionality in linear regression is considered to be the gap between the structure and the breaking mechanism of the fabric relative to yarn breakage. Based on the correlation between the degradation coefficients of spun yarn and fabrics and a mathematical model of the tensile strength of the spun yarn, the tensile strength of fabrics at a given UV exposure energy can be estimated from the tensile strength of the yarn.

4.
Polymers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015496

RESUMO

This study focused on the m-Aramid/p-Aramid blend ratio of the fabrics, clarified the quantitative relationship between UV exposure and strength retention, and developed a mathematical model to calculate tensile strength from an arbitrary amount of UV exposure energy. The results of tensile strength tests before and after UV exposure showed that the decrease in tensile strength due to UV degradation depended on the combination of p-Aramid and m-Aramid blend percentages. Tensile strength for all blend ratios decreased exponentially with UV exposure energy and was within the range of results for fabrics with p-Aramid 100% and m-Aramid 100%. The retention fraction of tensile strength, which represents the tensile strength after UV exposure relative to the initial tensile strength, decreased exponentially with increasing the fraction of UV exposure energy for all fabrics used in this study. Fitting the retention fraction of tensile strength to the fraction of UV exposure energy, two groups of fabrics were classified based on m-Aramid blends of 40% or more and 60% or less. This model can predict the tensile strength of firefighter clothing fabrics that retain high mechanical strength when exposed to UV light and design the strength of firefighter clothing with consideration of degradation over time.

5.
ACS Nano ; 16(8): 12801-12812, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35947793

RESUMO

Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core-sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.


Assuntos
Regulação da Temperatura Corporal , Dispositivos Eletrônicos Vestíveis , Têxteis , Temperatura Alta , Temperatura
6.
Polymers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267707

RESUMO

High-performance yarns are widely used to produce protective fabrics, including stab-resistant materials. The most common approach to studying the mechanism of puncture prevention is to use simulation to assist analysis. However, the anisotropy of the yarn is often overlooked during simulation owing to various factors. In fact, there is a marked difference between the axial and radial properties of a yarn. This may lead to large errors in research. In the present study, a composite material with a grid structure for puncture analysis was designed to investigate the influence of yarn anisotropy on the accuracy of simulation results. The present study combined an actual experiment with a simulation. In the actual experiment, Kevlar yarn/epoxy resin was used to prepare a mesh composite with a spacing of 1 mm. In the simulation, a 1:1 simulation model of composite material was established using finite element software. A simulated puncture experiment was conducted based on the actual experimental conditions and material parameters. After considering yarn anisotropy, the simulation results were closer to the actual experimental results. The simulation revealed that the main failure modes of the mesh material were the fracture of the resin and the bending deformation of the yarns at the junctions, while the surrounding areas were almost unaffected.

7.
ACS Appl Mater Interfaces ; 14(7): 9126-9137, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157422

RESUMO

Hydrogels that combine the integrated attributes of being adhesive, self-healable, deformable, and conductive show great promise for next-generation soft robotic/energy/electronic applications. Herein, we reported a dual-network polyacrylamide (PAAM)/poly(acrylic acid) (PAA)/graphene (GR)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (MAGP) conductive hydrogel composed of dual-cross-linked PAAM and PAA as well as PEDOT:PSS and GR as a conducting component that combines these features. A wearable strain sensor is fabricated by sandwiching the MAGP hydrogels between two dielectric carbon nanotubes (CNTs)/poly(dimethylsiloxane) (PDMS) layers, which can be utilized to monitor delicate and vigorous human motion. In addition, the hydrogel-based sensor can act as a deformable triboelectric nanogenerator (D-TENG) for harvesting mechanical energy. The D-TENG demonstrates a peak output voltage and current of 141 V and 0.8 µA, respectively. The D-TENG could easily light 52 yellow-light-emitting diodes (LEDs) simultaneously and demonstrated the capability to power small electronics, such as a hygrometer thermometer. This work provides a potential approach for the development of deformable energy sources and self-powered strain sensors.


Assuntos
Hidrogéis , Nanotubos de Carbono , Adesivos , Condutividade Elétrica , Eletrônica , Humanos
8.
Front Genet ; 10: 877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616471

RESUMO

Amphioxus is the closest living invertebrate proxy of the vertebrate ancestor. Systematic gene identification and expression profile analysis of amphioxus organs are thus important for clarifying the molecular mechanisms of organ function formation and further understanding the evolutionary origin of organs and genes in vertebrates. The precise regulation of microRNAs (miRNAs) is crucial for the functional specification and differentiation of organs. In particular, those miRNAs that are expressed specifically in organs (OSMs) play key roles in organ identity, differentiation, and function. In this study, the genome-wide miRNA transcriptome was analyzed in eight organs of adult amphioxus Branchiostoma belcheri using deep sequencing. A total of 167 known miRNAs and 23 novel miRNAs (named novel_mir), including 139 conserved miRNAs, were discovered, and 79 of these were identified as OSMs. Additionally, analyses of the expression patterns of eight randomly selected known miRNAs demonstrated the accuracy of the miRNA deep sequencing that was used in this study. Furthermore, potentially OSM-regulated genes were predicted for each organ type. Functional enrichment of these predicted targets, as well as further functional analyses of known OSMs, was conducted. We found that the OSMs were potentially to be involved in organ-specific functions, such as epidermis development, gonad development, muscle cell development, proteolysis, lipid metabolism, and generation of neurons. Moreover, OSMs with non-organ-specific functions were detected and primarily include those related to innate immunity and response to stimuli. These findings provide insights into the regulatory roles of OSMs in various amphioxus organs.

9.
Sci Rep ; 8(1): 10260, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980725

RESUMO

Plants incorporate inorganic materials (biominerals), such as silica, into their various components. Plants belonging to the order Poales, like rice plants and turfgrasses, show comparatively high rates of silicon accumulation, mainly in the form of silica bodies. This work aims to determine the shapes and roles of these silica bodies by microscopic observation and optical simulation. We have previously found convex silica bodies on the leaves of rice plants and hot-season turfgrasses (adapted to hot-seasons). These silica bodies enabled light reflection and ensured reduction of the photonic density of states, which presumably prevented the leaves from overheating, as suggested by theoretical optical analyses. The silica bodies have been considered to have the functions of reinforcement of the plant body. The present work deals with cold-season turfgrasses, which were found to have markedly different silica bodies, cuboids with a concave top surface. They presumably acted as small windows for introducing light into the tissues, including the vascular bundles in the leaves. The area of the silica bodies was calculated to be about 5% of the total surface area of epidermis, which limits the thermal radiation of the silica bodies. We found that the light signal introduced through the silica bodies diffused in the organs even reaching the vascular bundles, the physiological functions of this phenomena remain as future problems. Light signal in this case is not related with energy which heat the plant but sensing outer circumstances to respond to them.


Assuntos
Agrostis/metabolismo , Luz , Oryza/metabolismo , Folhas de Planta/metabolismo , Estações do Ano , Dióxido de Silício/metabolismo , Agrostis/fisiologia , Agrostis/efeitos da radiação , Oryza/fisiologia , Oryza/efeitos da radiação , Fótons , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
11.
Ind Health ; 55(6): 513-520, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28978816

RESUMO

The purpose of this research was to enhance the stab resistance of protective clothing material by developing a new high-density nonwoven structure. Ice picks often injure Japanese police officers due to the strict regulation of swords in the country. Consequently, this study was designed to improve stab resistance against ice picks. Most existing anti-stab protective clothing research has focused on various fabrics impregnated with resin, an approach that brings with it problems of high cost and complicated processing. Seldom has research addressed the potential for improving stab resistance by using nonwoven structures, which exhibit better stab resistance than fabric. In this research, we prepared a series of nonwoven structures with densities ranging from about 0.14 g/cm3 to 0.46 g/cm3 by varying the number of stacked layers of Kevlar/polyester nonwoven under a hot press. We then proposed two methods for producing such hot-press nonwovens: the multilayer hot-press method and the monolayer hot-press method. Stab resistance was evaluated according to NIJ Standard-0115.00. We also investigated the relationship among nonwoven density, stab resistance, and flexural rigidity, and here we discuss the respective properties of the two proposed methods. Our results show that stab resistance and flexural rigidity increase with nonwoven density, but flexural rigidity of nonwovens prepared using the monolayer hot-press method only shows a slight change as nonwoven density increases. Though the two methods exhibit little difference in maximum load, the flexural rigidity of nonwovens prepared using the monolayer hot-press method is much lower, which contributes to superior wear comfort. Finally, we investigated the mechanism behind the stabbing process. Stabbing with an ice pick is a complicated process that involves many factors. Our findings indicate that nonwovens stop penetration primarily in two ways: nonwoven deformation and fiber fractures.


Assuntos
Roupa de Proteção , Têxteis , Ferimentos Perfurantes/prevenção & controle , Humanos , Teste de Materiais , Polímeros
12.
Mater Sci Eng C Mater Biol Appl ; 73: 498-506, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183638

RESUMO

Non-woven mats of Bombyx mori silk fibroin were fabricated using electrospinning with an all aqueous solution at <10wt% without any co-existing water soluble polymer such as PEO. The fibroin aqueous solution electrospinnability was affected by the fibroin molecular weight and the spinning solution pH. Hot-water treatment without any alkaline reagent or soap produced higher molecular weight fibroin than the typical degumming process did. The higher molecular weight fibroin provided good electrospinnability. Results show that the basic solution (pH10-11) is important for electrospinning at low concentrations of 5wt%. Evaluation of structural and mechanical properties of the non-woven mat fabricated with water solvent revealed that it is safe for use in the human body. It is anticipated for wider use in medical materials such as cellular scaffolds for tissue engineering.


Assuntos
Fibroínas/química , Engenharia Tecidual/métodos , Animais , Bombyx , Fibroínas/ultraestrutura , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Peso Molecular , Solubilidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Água/química
13.
Int J Biol Macromol ; 57: 124-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500446

RESUMO

The purpose of our research is creating a new nanocomposite material. Generally silk fibroin (SF) is regarded as a promising base material for biomedical uses. The incorporation of montmorillonite (MMT) into SF fibers would improve physical properties of the SF fibers. We investigated a new method of combining electospun SF with MMT. Specifically, electrospun silk nanofibers were treated with methanol and dipped in a MMT suspension. We could obtain a nanosheet composite of silk nanofibers and MMT. Their ultrastructures were successfully visualized by high resolution transmission electron microscopy. This compound was comprised of individual silk nanofibers surrounded by thin layers of MMT, each with a thickness of about 1.2 nm. This structure was confirmed by elemental analysis. We also performed IR, NMR and X-ray diffraction analyses in conjunction with morphological data. Conclusively we obtained a new composite of silk nanofiber and MMT, which has never been reported. Using this unique nanocomposite biological tests of its application for a scaffold for tissue engineering are under way.


Assuntos
Bentonita/química , Bombyx/química , Fibroínas/química , Nanocompostos/química , Nanofibras/química , Animais , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura
14.
Int J Biol Macromol ; 50(2): 337-47, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198656

RESUMO

In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6-8 wt%, acceleration voltage ranging from 25 to 32 kV, spinning distance above 9 cm, and flow rate above 0.06 cm min(-1). The mean diameter of as spun sericin fibers varied from 114 to 430 nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a ß-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.


Assuntos
Bombyx/química , Nanofibras/química , Sericinas/química , Seda/química , Animais , Teste de Materiais , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termogravimetria
15.
Nanoscale Res Lett ; 6: 510, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867508

RESUMO

Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

16.
Bioresour Technol ; 101(21): 8439-45, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20598526

RESUMO

Silk fibers from Bombyx mori silkworm was degummed with different concentration of citric acid, and the physical properties and fine structure were investigated to elucidate the effects of citric acid treatment. The silk sericin removal percentage was almost 100% after degumming with 30% citric acid which resulted in a total weight loss of 25.4% in the silk fibers. The surface morphology of silk fiber degummed with citric acid was very smooth and fine, showed perfect degumming like traditional soap-alkali method. The tensile strength of silk fiber was increased after degumming with citric acid (507MPa), where as the traditional soap-alkali method causes to decrease the strength about half of the control silk fiber (250MPa). The molecular conformation estimated by Fourier transform infrared spectroscopy and the crystalline structure evaluated from X-ray diffraction curve stayed unchanged regardless of the degumming with citric acid and soap. The dye uptake percentage of silk fiber degummed with citric acid decreased slightly, about 4.2%. On the other hand, the dye uptake percentage of silk degummed with soap was higher which indicates the disordering of the molecular orientation of the laterally ordered structure, accompanied with the partial hydrolysis of silk fibroin molecules by the alkali action of soap. The thermal properties were greatly enhanced by soap and citric acid degumming agents. Dynamic mechanical thermal analysis showed silk degummed with citric acid is more stable in higher temperature than that of soap. With heating at above 300 degrees C, the silk degummed with citric acid shows an increase in storage modulus and an onset of tan delta peaks at 325 degrees C and the melt flow of the sample was inhibited. The degumming of silk fibers with citric acid is safe and the results obtained are quite promising as a basis for possible future industrial application.


Assuntos
Ácido Cítrico/farmacologia , Corantes/química , Seda/química , Varredura Diferencial de Calorimetria , Módulo de Elasticidade/efeitos dos fármacos , Sericinas/isolamento & purificação , Seda/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície/efeitos dos fármacos , Temperatura , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
17.
Int J Biol Macromol ; 42(3): 264-70, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18221782

RESUMO

To study the spinning condition of natural biopolymer silk, the silk fibers were directly acquired from Bombyx mori silkworm, N140 x C140 by a simple artificial forcibly silking method at the speed of 60, 120, 180 and 240 cm min(-1), respectively and its microstructure and physical properties were evaluated. The fine silk fibers (about 8 microm) were obtained at faster spinning speed, 240 cm min(-1). The tensile properties of silk fibers were remarkably increased with raising the forcibly spinning speeds. The beta-sheet structure contents of silk fibers obtained at higher speed were considerably increased. The fibers obtained by different spinning speeds exhibited a fairly similar X-ray crystallinity, while the degree of molecular orientation increased with decreasing the fiber diameter. The fine silk fibers obtained at higher speed (240 cm min(-1)) exhibited a slightly higher thermal stability, as shown by the upward shift of differential scanning calorimetry (DSC) decomposition temperature.


Assuntos
Bombyx , Seda , Animais , Larva , Estrutura Secundária de Proteína , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...