Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 517-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774586

RESUMO

Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, -40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 µg/mL TL + 2.5 µg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.

2.
Beilstein J Nanotechnol ; 15: 333-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590427

RESUMO

Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.

3.
Pharmaceutics ; 15(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37514016

RESUMO

Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.

4.
Int J Pharm ; 642: 123146, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37330156

RESUMO

In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.


Assuntos
Pneumopatias , Nanopartículas , Humanos , Glucocorticoides/farmacologia , Sistemas de Liberação de Medicamentos , Pulmão , Administração por Inalação , Lipídeos , Pneumopatias/tratamento farmacológico , Portadores de Fármacos
5.
Int J Pharm ; 634: 122632, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690132

RESUMO

Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.


Assuntos
Éter , Lipossomos , Archaea , Bactérias , Éteres , Etil-Éteres , Lipídeos , Vacinação
6.
Drug Dev Ind Pharm ; 48(11): 657-666, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36445155

RESUMO

BACKGROUND: The wide spectrum of antitumoral mechanisms of imiquimod (IMQ), made it a good candidate for topical therapy of melanoma. However, physicochemical properties make IMQ formulation a difficult task. Solubility and skin penetration of IMQ are increased when loaded into ultradeformable nanovesicles. OBJECTIVE: Survey the in vitro anti-melanoma activity of IMQ loaded into two types of ultradeformable nanovesicles: archaeosomes (UDA-IMQ) (containing sn-2,3 ether-linked phytanyl saturated archaeolipids extracted from Halorubrum tebenquichense) and liposomes lacking archaeolipids (UDL-IMQ). METHODS: We prepared and structurally characterized UDA-IMQ and UDL-IMQ. Cytotoxicity was determined on human melanoma cells (SK-Mel-28) and keratinocytes (HaCaT cells) by MTT assay and LDH release. The cellular uptake was determined by flow cytometry. Apoptosis/necrosis induction was determined by fluorescence microscopy after double staining with YO-PRO-1® and propidium iodide. RESULTS: Neither IMQ nor IMQ-nanovesicles reduced the viability of HaCaT cells; but UDL-IMQ (371 nm, -24 mV ζ potential, 31 µg IMQ/mg lipids) and UDA-IMQ (216 nm, -32 mV ζ potential, 61 µg IMQ/mg lipids) showed time and concentration-dependent cytotoxicity on SK-Mel-28 that resulted between 4 and 33 folds higher than free IMQ, respectively. While both UDA-IMQ and UDL-IMQ retained 60% of IMQ against dilution, UDA-IMQ uptaken by SK-Mel-28 cells was nine-fold higher than UDL-IMQ. UDL-IMQ induced early apoptosis, but UDA-IMQ induced both apoptosis and necrosis on SK-Mel-28 cells. CONCLUSIONS: UDA-IMQ was innocuous to keratinocytes but was highly uptaken and induced apoptosis and necrosis on melanoma cells, being a candidate for future investigations as adjuvant topical anti-melanoma therapy.


Assuntos
Melanoma , Pele , Humanos , Imiquimode , Lipossomos/química , Melanoma/tratamento farmacológico , Apoptose , Lipídeos/química , Necrose
7.
Pharmaceutics ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34575407

RESUMO

The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of -20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 µM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid-liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air-liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.

8.
Expert Opin Drug Deliv ; 18(10): 1415-1434, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34030559

RESUMO

INTRODUCTION: Autophagy is a critical housekeeping pathway to remove toxic protein aggregates, damaged organelles, providing cells with bioenergetic substrates needed to survive under adverse conditions. Since altered autophagy is associated with diverse diseases, its pharmacological modulation is considered of therapeutic interest. Nanomedicines may reduce the toxicity and improve the activity of toxic autophagy modulatory drugs (amd). AREAS COVERED: The status of the most relevant anti-tumor, anti-inflammatory, and anti-infectious treatments mediated by autophagy modulatory nanomedicines (amN) published in the last 5 years is discussed. EXPERT OPINION: Antitumor and anti-inflammatory treatments may be improved by administering amN for selective, massive, and targeted delivery of amd to diseased tissues. The use of amN as antimicrobial agent remains almost underexploited. Assessing the effect of amN on the complex autophagy machinery operating under different basal diseases, however, is not a trivial task. Besides structural reproducibility, nanomedicines must grant higher efficiency, and lower adverse effects than conventional medication. Simplicity of design, carefully chosen (scalable) preparation techniques, and rigorous monitoring of preclinical efficacy and nanotoxicity will improve the chances of clinical success. Currently, available data are not sufficient to envisage a fast-succeeding translation. Application of quality by design criteria would help to reach such milestones.


Assuntos
Nanomedicina , Neoplasias , Autofagia , Humanos , Neoplasias/tratamento farmacológico , Organelas , Reprodutibilidade dos Testes
9.
Eur J Pharm Biopharm ; 160: 42-54, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33440242

RESUMO

Nanoarchaeosomes are non-hydrolysable nanovesicles made of archaeolipids, naturally functionalised with ligand for scavenger receptor class 1. We hypothesized that nitrogenate bisphosphonate alendronate (ALN) loaded nanoarchaeosomes (nanoarchaeosomes(ALN)) may constitute more efficient macrophage targeted apoptotic inducers than ALN loaded nanoliposomes (nanoliposomes (ALN)). To that aim, ALN was loaded in cholesterol containing (nanoARC-chol(ALN)) or not (nanoARC(ALN)) nanoarchaeosomes. Nanoarchaeosomes(ALN) (220-320 nm sized, ~ -40 mV ξ potential, 38-50 µg ALN/mg lipid ratio) displayed higher structural stability than nanoliposomes(ALN) of matching size and ξ potential, retaining most of ALN against a 1/200 folds dilution. The cytotoxicity of nanoARC(ALN) on J774A.1 cells, resulted > 30 folds higher than free ALN and nanoliposomes(ALN) and was reduced by cholesterol in nanoARC-chol(ALN). Devoid of ALN, nanoARC-chol was non-cytotoxic, exhibited pronounced anti-inflammatory activity on J774.1 cells, strongly reducing reactive oxygen species (ROS) and IL-6 induced by LPS. Nanoarchaeosomes bilayer extensively interacted with serum proteins but resulted refractory to phospholipases. Upon J774A.1 cells uptake, nanoarchaeosomes induced cytoplasmic acid vesicles, reduced the mitochondrial membrane potential by 20-40 % without consuming ATP neither damaging lysosomes and increasing pERK. Refractory to chemoenzymatic attacks, either void or drug loaded, nanoarchaeosomes induced either anti-inflammation or macrophages apoptosis, constituting promising targeted nanovesicles for multiple therapeutic purposes.


Assuntos
Alendronato/administração & dosagem , Archaea/química , Bicamadas Lipídicas/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Lipídeos , Lipossomos , Macrófagos/patologia , Camundongos , Tamanho da Partícula
10.
Colloids Surf B Biointerfaces ; 191: 110961, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32208325

RESUMO

Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 µg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.


Assuntos
Carotenoides/farmacologia , Dexametasona/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Halobacteriaceae/metabolismo , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Anti-Inflamatórios/farmacologia , Células CACO-2 , Quimioterapia Combinada , Trato Gastrointestinal/lesões , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Nanopartículas/química
11.
Mol Pharm ; 17(1): 70-83, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31617725

RESUMO

Azithromycin (AZ) is a broad-spectrum antibiotic with anti-inflammatory and antiquorum sensing activity against biofilm forming bacteria such as Pseudomonas aeruginosa. AZ administered by oral or parenteral routes, however, neither efficiently accesses nor remains in therapeutic doses inside pulmonary biofilm depths. Instead, inhaled nanocarriers loaded with AZ may revert the problem of low accessibility and permanence of AZ into biofilms, enhancing its antimicrobial activity. The first inhalable nanovesicle formulation of AZ, nanoarchaeosome-AZ (nanoARC-AZ), is here presented. NanoARC prepared with total polar archaeolipids (TPAs), rich in 2,3-di-O-phytanyl-sn-glycero-1-phospho-(3'-sn-glycerol-1'-methylphosphate) (PGP-Me) from Halorubrum tebenquichense archaebacteria, consisted of ∼180 nm-diameter nanovesicles, loaded with 0.28 w/w AZ/TPA. NanoARC-AZ displayed lower minimal inhibitory concentration and minimal bactericidal concentration, higher preformed biofilm disruptive, and anti-PAO1 activity in biofilms than AZ. NanoARC penetrated and disrupted the structure of the PAO1 biofilm within only 1 h. Two milliliters of 15 µg/mL AZ nanoARC-AZ nebulized for 5 min rendered AZ doses compatible with in vitro antibacterial activity. The strong association between AZ and the nanoARC bilayer, combined with electrostatic attraction and trapping into perpendicular methyl groups of archaeolipids, as determined by Laurdan fluorescence anisotropy, generalized polarization, and small-angle X-ray scattering, was critical to stabilize during storage and endure shear forces of nebulization. NanoARC-AZ was noncytotoxic on A549 cells and human THP-1-derived macrophages, deserving further preclinical exploration as enhancers of AZ anti-PAO1 activity.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes/efeitos dos fármacos , Halorubrum/química , Nanocápsulas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Células A549 , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Azitromicina/toxicidade , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Humanos , Lipídeos/química , Lipossomos , Testes de Sensibilidade Microbiana , Mucinas/metabolismo , Nanocápsulas/ultraestrutura , Fosfolipídeos/química , Pseudomonas aeruginosa/enzimologia , Difração de Raios X
12.
Colloids Surf B Biointerfaces ; 179: 479-487, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005743

RESUMO

Oxidative stress plays an essential role in the pathogenesis and progression of inflammatory bowel disease. Co-administration of antioxidants and anti-inflammatory drugs has shown clinical benefits. Due to its significant reactive oxygen species (ROS) scavenging ability, great interest has been focused on superoxide dismutase (SOD) for therapeutic use. However, oral SOD is exposed to biochemical degradation along gastrointestinal transit. Furthermore, the antioxidant activity of SOD must be achieved intracellularly, therefore its cell entry requires endocytic mediating mechanisms. In this work, SOD was loaded into nanoarchaeosomes (ARC-SOD), nanovesicles fully made of sn 2,3 ether linked phytanyl saturated archaeolipids to protect and target SOD to inflammatory macrophages upon oral administration. Antioxidant and anti-inflammatory activities of ARC-SOD, non-digested and digested in simulated gastrointestinal fluids, on macrophages stimulated with H2O2 and lipopolysaccharide were determined and compared with those of free SOD and SOD encapsulated into highly stable liposomes (LIPO-SOD). Compared to SOD and LIPO-SOD, ARC-SOD (170 ± 14 nm, -30 ± 4 mV zeta potential, 122 mg protein/g phospholipids) showed the highest antioxidant and anti-inflammatory activity: it reversed the cytotoxic effect of H2O2, decreased intracellular ROS and completely suppressed the production of IL-6 and TNF-α on stimulated J774 A.1 cells. Moreover, while the activity of LIPO-SOD was lost upon preparation, gastrointestinal digestion and storage, ARC-SOD was easy to prepare and retained its antioxidant capacity upon digestion in simulated gastrointestinal fluids and after 5 months of storage. Because of their structural and pharmacodynamic features, ARC-SOD may be suitable for oral targeted delivery of SOD to inflamed mucosa.


Assuntos
Archaea/química , Sistemas de Liberação de Medicamentos , Inflamação/patologia , Macrófagos/patologia , Nanopartículas/química , Superóxido Dismutase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células CACO-2 , Bovinos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coloides/química , Humanos , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/farmacologia , Lipossomos , Macrófagos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Colato de Sódio/análise
13.
Phytomedicine ; 57: 339-351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826631

RESUMO

BACKGROUND: Thymus vulgaris essential oil (T) could be an alternative to classical antibiotics against bacterial biofilms, which show increased tolerance to antibiotics and host defence systems and contribute to the persistence of chronic bacterial infections. HYPOTHESIS: A nanovesicular formulation of T may chemically protect the structure and relative composition of its multiple components, potentially improving its antibacterial and antibiofilm activity. STUDY DESIGN: We prepared and structurally characterized T in two types of nanovesicles: nanoliposomes (L80-T) made of Soybean phosphatidylcholine (SPC) and Polysorbate 80 (P80) [SPC:P80:T 1:0.75:0.3 w:w], and nanoarchaeosomes (A80-T) made of SPC, P80 and total polar archaeolipids (TPA) extracted from archaebacteria Halorubrum tebenquichense [SPC:TPA:P80:T 0.5:0.50.75:0.7 w:w]. We determined the macrophage cytotoxicity and the antibacterial activity against Staphylococcus aureus ATCC 25,923 and four MRSA clinical strains. RESULTS: L80-T (Z potential -4.1 ±â€¯0.6 mV, ∼ 115 nm, ∼ 22 mg/ml T) and A80-T (Z potential -6.6 ±â€¯1.5 mV, ∼ 130 nm, ∼ 42 mg/ml T) were colloidally and chemically stable, maintaining size, PDI, Z potential and T concentration for at least 90 days. While MIC90 of L80-T was > 4 mg/ml T, MIC90 of A80-T was 2 mg/ml T for all S. aureus strains. The antibiofilm formation activity was maximal for A80-T, while L80-T did not inhibit biofilm formation compared to untreated control. A80-T significantly decreased the biomass of preformed biofilms of S. aureus ATCC 25,923 strain and of 3 of the 4 clinical MRSA isolates at 4 mg/ml T. It was found that the viability of J774A.1 macrophages was decreased significantly upon 24 h incubation with A80-T, L80-T and T emulsion at 0.4 mg/ml T. These results show that from 0.4 mg/ml T, a value lower than MIC90 and the one displaying antibiofilm activity, with independence of its formulation, T significantly decreased the macrophages viability. CONCLUSION: Overall, because of its lower MIC90 against planktonic bacteria, higher antibiofilm formation capacity and stability during storage, A80-T resulted better antibacterial agent than T emulsion and L80-T. These results open new avenues to explode the A80-T antimicrobial intracellular activity.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Óleos Voláteis/farmacologia , Thymus (Planta)/química , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Halorubrum/química , Humanos , Macrófagos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Óleos Voláteis/química , Fosfatidilcolinas/química , Polissorbatos/química , Infecções Estafilocócicas/microbiologia
14.
Colloids Surf B Biointerfaces ; 174: 536-543, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500742

RESUMO

Development of needle and pain free noninvasive immunization procedures is a top priority for public health agencies. In this work the topical adjuvant activity of the immunomodulator imiquimod (IMQ) carried by ultradeformable archaeosomes (UDA2) (nanovesicles containing sn-2,3 ether linked phytanyl saturated archaeolipids) was surveyed and compared with that of ultradeformable liposomes lacking archaeolipids (UDL2) and free IMQ, using the model antigen ovalbumin and a seasonal influenza vaccine in Balb/c mice. UDA2 (250 ± 94 nm, -26 ± 4 mV Z potential) induced higher IMQ accumulation in human skin and higher production of TNF-α and IL-6 by macrophages and keratinocytes than free IMQ and UDL2. Mixed with ovalbumin, UDA2 was more efficient at generating cellular response, as measured by an increase in serum IgG2a and INF-γ production by splenocytes, compared with free IMQ and UDL2. Moreover, mixed with a seasonal influenza vaccine UDA2 produced same IgG titers and IgG2a/IgG1 isotypes ratio (≈1) than the subcutaneously administered influenza vaccine. Topical UDA2 however, induced highest stimulation index and INF-γ levels by splenocytes. UDA2 might be a promising adjuvant for topical immunization, since it produced cell-biased systemic response with ≈ 13-fold lower IMQ dose than the delivered as the commercial IMQ cream, Aldara.


Assuntos
Halorubrum/imunologia , Imiquimode/administração & dosagem , Queratinócitos/imunologia , Macrófagos/imunologia , Nanopartículas/administração & dosagem , Pele/imunologia , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Administração Tópica , Animais , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Humanos , Imiquimode/imunologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Lipossomos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Ovalbumina/imunologia , Pele/citologia , Pele/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-30460231

RESUMO

Hyperhalophilic archaebacteria exclusively produce sn2,3 diphytanylglycerol diether archaeolipids, unique structures absent in bacteria and eukaryotes. Nanovesicles made of archaeolipids known as nanoarchaeosomes (nanoARC), possess highly stable bilayers, some of them displaying specific targeting ability. Here we hypothesize that nanoARC made from Halorubrum tebenquichense archaebacteria, may constitute efficient carriers for the TLR7 agonist imiquimod (IMQ). NanoARC-IMQ takes advantage of the intense interaction between IMQ and the highly disordered, poorly fluid branched archaeolipid bilayers, rich in archaeol analog of methyl ester of phosphatidylglycerophosphate (PGP-Me), a natural ligand of scavenger receptor A1 (SR-A1). This approach lacks complex manufacture steps required for bilayers labeling, enabling future analytical characterization, batch reproducibility, and adaptation to higher scale production. SR-A1 mediated internalization of particulate material is mostly targeted to macrophages and is extensive because it is not submitted to a negative feedback. A massive and selective intracellular delivery of IMQ may concentrate its effect specifically into the endosomes, where the TLR7 is expressed, magnifying its immunogenicity, at the same time reducing its systemic bioavailability, and therefore it's in vivo adverse effects. NanoARC-IMQ (600-900 nm diameter oligolamellar vesicles of ~-43 mV Z potential) were heavily loaded with IMQ at ~44 µg IMQ/mg phospholipids [~20 folds higher than the non-SR-A1 ligand soyPC liposomes loaded with IMQ (LIPO-IMQ)]. In vitro, nanoARC-IMQ induced higher TNF-α and IL-6 secretion by J774A1 macrophages compared to same dose of IMQ and same lipid dose of LIPO-IMQ. In vivo, 3 subcutaneous doses of nanoARC-IMQ+ 10 µg total leishmania antigens (TLA) at 50 µg IMQ per Balb/C mice, induced more pronounced DTH response, accompanied by a nearly 2 orders higher antigen-specific systemic IgG titers than IMQ+TLA and LIPO-IMQ. The isotype ratio of nanoARC-IMQ+TLA remained ~0.5 indicating, the same as IMQ+TLA, a Th2 biased response distinguished by a pronounced increase in antibody titers, without negative effects on splenocytes lymphoproliferation, with a potential CD8+LT induction 10 days after the last dose. Overall, this first approach showed that highly SR-A1 mediated internalization of heavily loaded nanoARC-IMQ, magnified the effect of IMQ on TLR7 expressing macrophages, leading to a more intense in vivo immune response.

16.
J Neurochem ; 144(6): 748-760, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280499

RESUMO

Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Dendrímeros/farmacocinética , Neuroglia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/complicações , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Cultura Primária de Células , Ratos Wistar , Acidente Vascular Cerebral/complicações
17.
Nanomedicine (Lond) ; 12(10): 1165-1175, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28447893

RESUMO

AIM: Develop nanoparticulate agents for oral targeted delivery of dexamethasone (Dex) to macrophages of inflamed mucosa. MATERIALS & METHODS: Solid archaeolipid nanoparticles (SAN-Dex) (compritol/Halorubrum tebenquichense polar archaeolipids/soybean phosphatidylcholine/Tween-80 4; 0.9; 0.3; 3% w/w) loaded with Dex were prepared. Their mucopenetration, stability under digestion and in vitro anti-inflammatory activity, were determined. RESULTS: Ultra-small SAN-Dex strongly reduced the levels of TNF-α, IL-6 and IL-12 on J774A1 cells stimulated with lipopolysaccharides as compared with free Dex or loaded in ordinary solid lipid nanoparticles-Dex. After in vitro digestion, the anti-inflammatory activity of SAN-Dex was retained, while that of solid lipid nanoparticles-Dex was lost. CONCLUSION: Because of their structural and pharmacodynamic features, SAN-Dex may be suitable for oral targeted delivery to inflamed mucosa.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Lipídeos/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Animais , Anti-Inflamatórios/farmacologia , Células CACO-2 , Linhagem Celular , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Halorubrum/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Mucosa Intestinal/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Fator de Necrose Tumoral alfa/imunologia
18.
Colloids Surf B Biointerfaces ; 152: 114-123, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103528

RESUMO

Ultradeformable archaeosomes (UDA) are nanovesicles made of total polar archaeolipids (TPA) from the archaea Halorubrum tebenquichense, soybean phosphatidylcholine and sodium cholate (3:3:1w/w). Fresh dispersions of UDA including different type of antigens are acknowledged as efficient topical vaccination agents. UDA dispersions however, if manufactured for pharmaceutical use, have to maintain colloidal stability upon liposomicidal processes such as sterilization and lyophilization (SLRUDA), needed to extend shelf life during storage. The remaining capacity of SLRUDA to act as adjuvants was therefore tested here for the first time. Another unexplored issue addressed here, is the outcome of replacing classical antigen inclusion into nanovesicles by their physical mixture. Our results showed that UDA behaved as super-stable nanovesicles because of its high endurance during heat sterilization and storage for 5 months at 40°C. The archaeolipid content of UDA however, was insufficient to protect it against lyophilization, which demanded the addition of 2.5% v/v glycerol plus 0.07% w/v glucose. No significant differences were found between serum anti-ovalbumin (OVA) IgG titers induced by fresh or SLRUDA upon topical application of 4 weekly doses at 600µg lipids/75µg OVA to Balb/c mice. Finally, SLRUDA mixed with OVA elicited the same Th2 biased plus a non-specific cell mediated response than OVA encapsulated within UDA. Concluding, we showed that TPA is key component of super-stable nanovesicles that confers resistance to heat sterilization and to storage under cold-free conditions. The finding of SLRUDA as ready-to-use topical adjuvant would lead to simpler manufacture processing and cheaper products. .


Assuntos
Nanopartículas/química , Vacinação , Liofilização , Éteres de Glicerila/química , Esterilização
19.
J Mater Chem B ; 5(40): 8083-8095, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264647

RESUMO

In this study, a NE-U22 vibrating mesh Omron nebulizer was used to deliver the Lissamine™ rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (Rh-PE) and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS)/p-xylene-bis-pyridinium bromide (DPX) double-labelled macrophage-targeted pH-sensitive archaeosomes (ApH, 174 ± 48 nm, -30 ± 13 mV unilamellar nanovesicles made of dioleoyl-sn-glycero-3-phosphoethanolamine: [total polar archaeolipids from the hyperhalophile archaebacteria Halorubrum tebenquichense]: cholesteryl hemisuccinate 4.2 : 2.8 : 3 w : w : w) to J774A.1 cells covered by a Prosurf pulmonary surfactant (PS) monolayer at or below the equilibrium surface pressure πe. The uptake and cytoplasmic drug release from ApH were assessed by flow cytometry of Rh-PE and HPTS fluorescence, respectively. Despite being soft matter, nanovesicles are submitted to the dismantling interactions of shear stress of nebulization and contact with the surfactant barrier, and at least a fraction of nebulized ApH was found to be stable enough to execute higher cytoplasmic delivery than archaeolipid-lacking vesicles. Nebulized ApH increased the PS tensioactivity to just below πe, which was beyond the physiological range; this finding indicated that changes in lung surfactant function induced by nebulized nanovesicles were less likely to occur in vivo. The cytoplasmic delivery from ApH slightly decreased across monolayers at πe; this suggested that nanovesicles crossed the PS in a fashion inversely related to monolayer compression. Laurdan generalized polarization and fluorescence anisotropy were used to reveal that nanovesicles neither depleted B and C proteins of the PS nor increased the fluidity of the PS. Together with the feasibility of the cytoplasmic drug delivery upon nebulization, our results suggest that ApH are structurally unique nanovesicles that would not induce biophysical changes leading to PS inactivation and open the door to deeper future translational studies.

20.
Nanomedicine (Lond) ; 11(16): 2103-17, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27465512

RESUMO

AIM: To increase the subcellular delivery of dexamethasone phosphate (DP) and stability to nebulization stress, pH-sensitive nanoliposomes (LpH) exhibiting archaeolipids, acting as ligands for scavenger receptors (pH-sensitive archaeosomes [ApH]), were prepared. MATERIALS & METHODS: The anti-inflammatory effect of 0.18 mg DP/mg total lipid, 100-150 nm DP-containing ApH (dioleylphosphatidylethanolamine: Halorubrum tebenquichense total polar archaeolipids:cholesteryl hemisuccinate 4.2:2.8:3 w:w) was tested on different cell lines. Size and HPTS retention of ApH and conventional LpH (dioleylphosphatidylethanolamine:cholesteryl hemisuccinate 7:3 w:w) before and after nebulization were determined. RESULTS & CONCLUSION: DP-ApH suppressed IL-6 and TNF-α on phagocytic cells. Nebulized after 6-month storage, LpH increased size and completely lost its HPTS while ApH3 conserved size and polydispersity, fully retaining its original HPTS content.


Assuntos
Anti-Inflamatórios/administração & dosagem , Preparações de Ação Retardada/química , Dexametasona/administração & dosagem , Halorubrum/química , Lipídeos/química , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Dexametasona/farmacologia , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Lipossomos/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Nebulizadores e Vaporizadores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...