Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37627635

RESUMO

Citrus are classified as salt-sensitive crops. However, a large diversity has been observed regarding the trends of tolerance among citrus. In the present article, physiological and biochemical studies of salt stress tolerance were carried out according to the level of polyploidy of different citrus genotypes. We particularly investigated the impact of tetraploidy in trifoliate orange (Poncirus trifoliata (L.) Raf.) (PO4x) and Cleopatra mandarin (Citrus reshni Hort. Ex Tan.) (CL4x) on the tolerance to salt stress compared to their respective diploids (PO2x and CL2x). Physiological parameters such as gas exchange, ions contents in leaves and roots were analyzed. Roots and leaves samples were collected to measure polyphenol, malondialdehyde (MDA), ascorbate and H2O2 contents but also to measure the activities of enzymes involved in the detoxification of active oxygen species (ROS). Under control conditions, the interaction between genotype and ploidy allowed to discriminate different behavior in terms of photosynthetic and antioxidant capacities. These results were significantly altered when salt stress was applied when salt stress was applied. Contrary to the most sensitive genotype, that is to say the diploid trifoliate orange PO2x, PO4x was able to maintain photosynthetic activity under salt stress and had better antioxidant capacities. The same observation was made regarding the CL4x genotype known to be more tolerant to salt stress. Our results showed that tetraploidy may be a factor that could enhance salt stress tolerance in citrus.

2.
Plants (Basel) ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111854

RESUMO

Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.

3.
Front Plant Sci ; 13: 1030862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407590

RESUMO

Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.

4.
Antioxidants (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326213

RESUMO

Currently, drought stress is a major issue for crop productivity, and future climate models predict a rise in frequency and severity of drought episodes. Polyploidy has been related to improved tolerance of plants to environmental stresses. In Citrus breeding programs, the use of triploidy is an effective way to produce seedless fruits, one of the greatest consumer expectations. The current study used physiological and biochemical parameters to assess the differential responses to moderate water deficit of 3x genotypes compared to 2x genotypes belonging to the same hybridization. Both parents, the mandarin Fortune and Ellendale tangor, were also included in the experimental design, while the 2x common clementine tree was used as reference. Water deficit affects leaf water status, as well as physiological and detoxification processes. Triploid genotypes showed a better ability to maintain water status through increased proline content and photosynthetic capacity. Moreover, less oxidative damage was associated with stronger antioxidant defenses in triploid genotypes. We also found that triploidy improved the recovery capacity after a water deficit episode.

5.
Front Plant Sci ; 12: 685679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512684

RESUMO

Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.

6.
Tree Physiol ; 41(12): 2359-2374, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34077547

RESUMO

Water scarcity restricts citrus growth and productivity worldwide. In pot conditions, tetraploid plants tolerate water deficit more than their corresponding diploids. However, their tolerance mechanisms remain elusive. In this study, we focused on which mechanisms (i.e., hydraulic, osmotic or antioxidative) confer water-deficit tolerance to tetraploids. We exposed diploid and tetraploid Volkamer lemon rootstock (Citrus volkameriana Tan. and Pasq.) to quickly (fast) and slowly (slow) developing water-deficit conditions. We evaluated their physiological, antioxidative defense and osmotic adjustment responses, and mineral distribution to leaves and roots. Water-deficit conditions decreased the photosynthetic variables of both diploid and tetraploid plants. Moreover, the corresponding decrease was greater in diploids than tetraploids. Higher concentrations of antioxidant enzymes, osmoprotectants and antioxidant capacity were found in the leaves and roots of tetraploids than diploids under water deficit. Diploid plants showed fast response in slow water-deficit condition, but that response did not persist as the deficit intensified. Meanwhile, tetraploids had lower water loss, which slowed the onset of slow water deficit relative to diploids. This response allowed stronger photosynthesis, while antioxidant and osmoprotectant production allowed for further tolerance once desiccation began. Overall, our results concluded that Volkamer lemon tetraploid plants tolerate rapid and slow water deficit by maintaining their photosynthesis due to low conductance (stem or roots), which helps to avoid desiccation, and stronger biochemical defense machinery than their corresponding diploids.


Assuntos
Citrus , Tetraploidia , Citrus/genética , Diploide , Raízes de Plantas/genética , Água
7.
Plant Physiol Biochem ; 162: 762-775, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33812345

RESUMO

Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.


Assuntos
Citrus , Triploidia , Citrus/genética , Peróxido de Hidrogênio , Melhoramento Vegetal , Água
8.
Front Plant Sci ; 12: 634237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897725

RESUMO

Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) (Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2×) and their tetraploid (4×) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange × Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate (P net ), stomatal conductance (g s ), transpiration (E), maximum quantum efficiency of PSII (F v /F m ), electron transport rate (ETR), ETR/P net ], and effective quantum yield of PSII [Y(II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4× rootstocks did not show better tolerance than those grafted on their 2× counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency.

9.
Sci Rep ; 11(1): 8902, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903646

RESUMO

Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype.

10.
PLoS One ; 16(4): e0247558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831006

RESUMO

Water shortage is among the major abiotic stresses that restrict growth and productivity of citrus. The existing literature indicates that tetraploid rootstocks had better water-deficit tolerance than corresponding diploids. However, the associated tolerance mechanisms such as antioxidant defence and nutrient uptake are less explored. Therefore, we evaluated physiological and biochemical responses (antioxidant defence, osmotic adjustments and nutrient uptake) of diploid (2x) and tetraploid (4x) volkamer lemon (VM) rootstocks grafted with kinnow mandarin (KM) under two water-deficit regimes. The KM/4xVM (VM4) and KM/2xVM (VM2) observed decrease in photosynthetic variables, i.e., photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), leaf greenness (SPAD), dark adopted chlorophyll fluorescence (Fv/Fm), dark adopted chlorophyll fluorescence (Fv´/Fm´), relative water contents (RWC) and leaf surface area (LSA), and increase in non-photochemical quenching (NPQ) under both water-deficit regimes. Moreover, oxidative stress indicators, i.e., malondialdehyde (MDA) and hydrogen peroxide, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione reductase (GR) were increased under both water-deficit regimes. Nonetheless, increase was noted in osmoprotectants such as proline (PRO) and glycine betaine (GB) and other biochemical compounds, including antioxidant capacity (AC), total phenolic content (TPC) and total soluble protein (TSP) in VM2 and VM4 under both water-deficit regimes. Dry biomass (DB) of both rootstocks was decreased under each water-deficit condition. Interestingly, VM4 showed higher and significant increase in antioxidant enzymes, osmoprotectants and other biochemical compounds, while VM2 exhibited higher values for oxidative stress indicators. Overall, results indicated that VM4 better tolerated water-deficit stress by maintaining photosynthetic variables associated with strong antioxidant defence machinery as compared to VM2. However, nutrient uptake was not differed among tested water-deficit conditions and rootstocks. The results conclude that VM4 can better tolerate water-deficit than VM2. Therefore, VM4 can be used as rootstock in areas of high-water deficiency for better citrus productivity.


Assuntos
Citrus/metabolismo , Diploide , Estresse Oxidativo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tetraploidia , Citrus/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Água/metabolismo
11.
Front Plant Sci ; 11: 540894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224156

RESUMO

Synthetic polyploids have been extensively studied for breeding in the last decade. However, the use of such genotypes at the agronomical level is still limited. Polyploidization is known to modify certain plant phenotypes, while leaving most of the fundamental characteristics apparently untouched. For this reason, polyploid breeding can be very useful for improving specific traits of crop varieties, such as quality, yield, or environmental adaptation. Nevertheless, the mechanisms that underlie polyploidy-induced novelty remain poorly understood. Ploidy-induced phenotypes might also include some undesired effects that need to be considered. In the case of grafted or composite crops, benefits can be provided both by the rootstock's adaptation to the soil conditions and by the scion's excellent yield and quality. Thus, grafted crops provide an extraordinary opportunity to exploit artificial polyploidy, as the effects can be independently applied and explored at the root and/or scion level, increasing the chances of finding successful combinations. The use of synthetic tetraploid (4x) rootstocks may enhance adaptation to biotic and abiotic stresses in perennial crops such as apple or citrus. However, their use in commercial production is still very limited. Here, we will review the current and prospective use of artificial polyploidy for rootstock and scion improvement and the implications of their combination. The aim is to provide insight into the methods used to generate and select artificial polyploids and their limitations, the effects of polyploidy on crop phenotype (anatomy, function, quality, yield, and adaptation to stresses) and their potential agronomic relevance as scions or rootstocks in the context of climate change.

12.
Front Plant Sci ; 11: 330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391024

RESUMO

Low temperatures during winter are one of the main constraints for citrus crop. Polyploid rootstocks can be used for improving tolerance to abiotic stresses, such as cold stress. Because the produced fruit are seedless, using triploid scions is one of the most promising approaches to satisfy consumer expectations. In this study, we evaluated how the triploidy of new citrus varieties influences their sensitivity to natural chilling temperatures. We compared their behavior to that of diploid citrus, their parents (Fortune mandarin and Ellendale tangor), and one diploid clementine tree, as reference, focusing on photosynthesis parameters, oxidative metabolism, and volatile organic compounds (VOC) in leaves. Triploid varieties appeared to be more tolerant than diploid ones to natural low temperatures, as evidenced by better photosynthetic properties (Pnet, gs, Fv/Fm , ETR/P net ratio), without relying on a better antioxidant system. The VOC levels were not influenced by chilling temperatures; however, they were affected by the ploidy level and atypical chemotypes were found in triploid varieties, with the highest proportions of E-ß-ocimene and linalool. Such compounds may contribute to better stress adaptation.

13.
Front Plant Sci ; 11: 615335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679818

RESUMO

The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents ("Fortune" mandarin and "Ellendale" tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (P net and g s ) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs ) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.

14.
J Plant Physiol ; 244: 153071, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31756571

RESUMO

Tetraploids are usually more tolerant to environmental stresses than diploids. Citrus plants face numerous abiotic stresses, including salinity, which negatively affect growth and yield. Double diploid citrus rootstocks have been shown to be more tolerant to abiotic stresses than their diploid relatives. In this study, we evaluated the antioxidative and osmotic adjustment mechanisms of diploid (2x) and double diploid (4x) volkamer lemon (Citrus volkameriana Tan. and Pasq.) rootstocks, which act against salt stress (75 and 150 mM). Results indicated that, under salt stress, all physiological variables (photosynthesis, stomatal conductance, transpiration rate, and leaf greenness) decreased, and these decreases were more noticeable in 2x plants than in 4x plants. On the other hand, accumulation of oxidative markers (malondialdehyde and hydrogen peroxide) was greater in the leaves and roots of 2x seedlings than in 4x seedlings. Similarly, the activities of antioxidative enzymes (peroxidase, ascorbate peroxidase, glutathione reductase, and catalase) were higher in the leaves and roots of 4x plants than in 2x plants. However, superoxide dismutase activity was higher in the roots of 2x seedlings than 4x seedlings. Double diploid plants affected by salt stress accumulated more osmolytes (i.e. proline and glycine betaine) in their leaves and roots than that by 2x plants. Total protein content, antioxidant capacity, and total phenolic content were also higher in 4x plants than 2x plants under salinity. At 150 mM, both 2x and 4x plants showed more symptoms of stress than those at 75 mM. Sodium content was the highest in the roots of 2x plants and in the leaves of 4x plants, while chloride content peaked in the leaves of 2x plants and in the roots of 4x plants. Overall, our results demonstrate that the active antioxidative defence mechanisms of 4x plants increase their tolerance to salinity compared to their corresponding 2x relatives. Thus, the use of newly developed tetraploid rootstocks may be a strategy for enhancing crop production in saline conditions.


Assuntos
Antioxidantes/fisiologia , Citrus/fisiologia , Osmose/fisiologia , Tolerância ao Sal/genética , Citrus/genética , Diploide , Plântula/genética , Plântula/fisiologia , Tetraploidia
15.
Front Plant Sci ; 10: 427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057569

RESUMO

The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.

16.
Front Plant Sci ; 10: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853962

RESUMO

Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange × Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 (Poncirus trifoliata + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters (P net, F v/F m, and G s) and the lower accumulation of oxidative markers (MDA and H2O2) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency.

17.
Plant Physiol Biochem ; 135: 372-384, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30616112

RESUMO

Nutrient deficiency has economic and ecological repercussions for citrus fruit crops worldwide. Citrus crops rely on fertilization to maintain good fruit output and quality, whereas new crop management policy aims to reduce fertilizers input. New rootstocks are needed to meet to this constraint, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. Here we compared physiological, biochemical and anatomic traits of leaves in diploid (2x) and doubled-diploid (4x) Citrumelo 4475 (Citrus paradisi L. Macf. × Poncirus trifoliata L. Raf.) and Volkamer lemon (Citrus limonia Osb.) seedlings over 7 months of nutrient deficiency. Photosynthetic parameters (Pnet, Gs and Fv/Fm) decreased, but to a lesser extent in 4x genotypes than 2x. Degradation of the ultrastructural organelles (chloroplasts and mitochondria) and compound cells (thylakoids and starches) was also lower in 4x genotypes, suggesting that tetraploidy may enhance tolerance to nutrient deficiency. However, leaf surface (stomata, stomatal density and epithelial cells) showed no nutrient deficiency-induced change. In 4x Citrumelo 4475, the higher tolerance to nutrient deficiency was associated with a lower MDA and H2O2 accumulation than in the 2x, suggesting a more efficient antioxidant system in the 4x genotype. However, few differences in antioxidant system and oxidative status were observed between 2x and 4x Volkamer lemons.


Assuntos
Citrus/genética , Diploide , Plântula/genética , Tetraploidia , Clorofila A/metabolismo , Cloroplastos/ultraestrutura , Citrus/metabolismo , Citrus/fisiologia , Citrus/ultraestrutura , Citrus paradisi/genética , Citrus paradisi/metabolismo , Citrus paradisi/fisiologia , Citrus paradisi/ultraestrutura , Microscopia Eletrônica de Varredura , Mitocôndrias/ultraestrutura , Nutrientes/deficiência , Fotossíntese , Poncirus/genética , Poncirus/metabolismo , Poncirus/fisiologia , Poncirus/ultraestrutura , Plântula/metabolismo , Plântula/fisiologia , Plântula/ultraestrutura , Estresse Fisiológico
18.
Front Plant Sci ; 9: 901, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123223

RESUMO

Polyploidy is one of the main forces that drives the evolution of plants and provides great advantages for breeding. Somatic hybridization by protoplast fusion is used in citrus breeding programs. This method allows combining the whole parental genomes in a single genotype, adding complementary dominant characters, regardless of parental heterozygosity. It also contributes to surpass limitations imposed by reproductive biology and quickly generates progenies that combine the required traits. Two allotetraploid somatic hybrids recovered from the citrus rootstocks-Citrus macrophylla (CM) and Carrizo citrange (CC)-were characterized for morphology, genome composition using molecular markers (SNP, SSR, and InDel), and their tolerance to iron chlorosis, salinity, and Citrus tristeza virus (CTV). Both hybrids combine the whole parental genomes even though the loss of parental alleles was detected in most linkage groups. Mitochondrial genome was inherited from CM in both the hybrids, whereas recombination was observed for chloroplastic genome. Thus, somatic hybrids differ from each other in their genome composition, indicating that losses and rearrangements occurred during the fusion process. Both inherited the tolerance to stem pitting caused by CTV from CC, are tolerant to iron chlorosis such as CM, and have a higher tolerance to salinity than the sensitive CC. These hybrids have potential as improved rootstocks to grow citrus in areas with calcareous and saline soils where CTV is present, such as the Mediterranean region. The provided knowledge on the effects of somatic hybridization on the genome composition, anatomy, and physiology of citrus rootstocks will be key for breeding programs that aim to address current and future needs of the citrus industry.

19.
J Plant Physiol ; 218: 94-99, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28802186

RESUMO

Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress. In this work, a lectin like gene, namely ClLectin1, was characterized in Volkamer lemon and its expression was studied in plants exposed to either water stress, hormonal elicitors (JA, SA, ABA) or wounding to understand whether this gene may have a function in the response to multiple stress combination. Results showed that ClLectin1 has 100% homology with a L-type lectin gene from C. sinensis and the in silico study of the 5'UTR region showed the presence of cis-responsive elements to SA, DRE2 and ABA. ClLectin1 was rapidly induced by hormonal treatments and wounding, at local and systemic levels, suggesting an involvement in defence signalling pathways and a possible role as fast detection biomarker of biotic stress. On the other hand, the induction of ClLectin1 by water stress pointed out a role of the gene in the response to drought. The simultaneous response of ClLectin1 expression to water stress and SA treatment could be further investigated to assess whether a moderate drought stress may be useful to improve citrus performance by stimulating the SA-dependent response to biotic stress.


Assuntos
Citrus/fisiologia , Regulação da Expressão Gênica de Plantas , Lectinas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Água/metabolismo , Ácido Abscísico/metabolismo , Citrus/genética , Ciclopentanos/metabolismo , Secas , Lectinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
20.
J Plant Physiol ; 214: 108-115, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478318

RESUMO

Low temperatures can disturb the development, growth and geographic distribution of plants, particularly cold-sensitive plants in the Mediterranean area, where temperatures can reach seasonally low levels. In citrus crops, scion/rootstock combinations are used to improve fruit production and quality, and increase tolerance to biotic and abiotic stresses. In the last decade, several studies have shown that tetraploid citrus seedlings or rootstocks are more tolerant to abiotic stress than their respective diploid. The objective of this study was to test whether the use of tetraploid rootstocks can improve the chilling tolerance of the scion. We compared physiological and biochemical responses to low seasonal temperatures of common Clementine (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) grafted on diploid and tetraploid Carrizo citrange rootstocks, named C/2xCC and C/4xCC, respectively. During the coldest months, C/4xCC showed a smaller decrease in net photosynthesis (Pn), stomatal conductance (Gs), chlorophyll fluorescence (Fv/Fm), and starch levels, and lower levels of malondialdehyde and electrolyte leakage than C/2xCC. Specific activities of catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were higher in C/4xCC during the cold period, whereas chlorophyll, proline, ascorbate and hydrogen peroxide (H2O2) levels and superoxide dismutase (SOD) activity did not vary significantly between C/4xCC and C/2xCC throughout the study period. Taken together, these results demonstrate that tetraploid Carrizo citrange rootstock improves the chilling tolerance of common clementine (scion) thanks to a part of the antioxidant system.


Assuntos
Citrus sinensis/metabolismo , Citrus/metabolismo , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Citrus/fisiologia , Citrus sinensis/fisiologia , Temperatura Baixa , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...