Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241228865, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343078

RESUMO

We propose tabular two-dimensional correlation spectroscopy analysis for extracting features from multifaceted characterization data, essential for understanding material properties. This method visualizes similarities and phase lags in structural parameter changes through heatmaps, combining hierarchical clustering and asynchronous correlations. We applied the proposed method to data sets of carbon nanotube (CNT) films annealed at various temperatures and revealed the complexity of their hierarchical structures, which include elements such as voids, bundles, and amorphous carbon. Our analysis addresses the challenge of attempting to understand the sequence of structural changes, especially in multifaceted characterization data where 11 structural parameters derived from eight characterization methods interact with complex behavior. The results show how phase lags (asynchronous changes from stimuli), and parameter similarities can illuminate the sequence of structural changes in materials, providing insights into phenomena such as the removal of amorphous carbon and graphitization in annealed CNTs. This approach is beneficial even with limited data and holds promise for a wide range of material analyses, demonstrating its potential in elucidating complex material behaviors and properties.

2.
Anal Sci ; 40(3): 359-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228992

RESUMO

Chromium speciation analysis in environmental water is of great significance for the monitoring of water pollution and assessing its influences on human health. This study proposes a rapid analytical approach for the simultaneous determination of Cr(VI) and Cr(III) in environmental waters by hydrophilic interaction chromatography (HILIC) coupled with ICPMS under a water-rich condition. 2,6-Pyridinedicarboxylic acid (PDCA) was used to unify Cr(III) species in various chemical forms into a stable Cr(III)-PDCA anion complex and then separated from Cr(VI) oxyanion on a diol-bonded polymer-based HILIC column. An aqueous mobile phase containing 50 mmol L-1 ammonium acetate (pH 7.0), 2 mmol L-1 PDCA, and 4% acetonitrile successfully separates chromium species as well as chloride ions. In addition, our method elutes Cr(VI) preferentially over Cr(III)-PDCA, enabling rapid determination of Cr(VI), and both chromium species were analyzed within 6.2 min. The detection limits of 0.19 µg L-1 for Cr(VI) and 0.35 µg L-1 for Cr(III) at m/z 52 under He collision mode are comparable to or better than the conventional ion exchange chromatography-ICPMS methods, and quantitative recovery was obtained from spike-recovery tests on river water samples containing various levels of matrix. Optimization experiments of the HPLC conditions indicate that the retentions of Cr(VI) and Cr(III)-PDCA are characterized by electrostatic and nonpolar interactions, respectively. The retention behavior of inorganic anions and cations in water-rich conditions observed in this study will provide new insights into the separation mechanism in polymer-based HILIC columns, which has been poorly understood.

3.
Phys Rev Lett ; 131(9): 096301, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721814

RESUMO

A bicircular light (BCL) consists of left and right circularly polarized lights with different frequencies, and draws a roselike pattern with a rotational symmetry determined by the ratio of the two frequencies. Here we show that an application of a BCL to centrosymmetric systems allows a photocurrent generation through introduction of an effective polarity to the system. We derive formulas for the BCL-induced photocurrent from a standard perturbation theory, which is then applied to a simple 1D model and 3D Dirac and Weyl semimetals. A nonperturbative effect with strong light intensity is also discussed with the Floquet technique.

4.
Phys Rev Lett ; 130(13): 136301, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067327

RESUMO

The concept of Berry curvature is essential for various transport phenomena. However, an effect of the Berry curvature on magnetochiral anisotropy, i.e., nonreciprocal magnetotransport, is still elusive. Here, we report that the Berry curvature induces the large magnetochiral anisotropy. In Weyl semimetal WTe_{2}, we observe the strong enhancement of the magnetochiral anisotropy when the Fermi level is located near the Weyl points. Notably, the maximal figure of merit γ[over ¯] reaches 1.2×10^{-6} m^{2} T^{-1} A^{-1}, which is the largest ever reported in bulk materials. Our semiclassical calculation shows that the diverging Berry curvature at the Weyl points strongly enhances the magnetochiral anisotropy.

5.
Anal Sci ; 39(7): 1047-1052, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099257

RESUMO

Organophosphorus pesticides such as glyphosate and glufosinate are used worldwide, and environmental regulatory values are being adopted in many countries due to their potential toxicity. In the present work, a pretreatment-free analytical method is established in which these two compounds with their metabolites are isolated from each other by anion-exchange HPLC using ammonium acetate (70 mM, pH 3.7) as eluent, and they are detected by triple quadrupole ICP-MS. Very low detection limits of 0.03-0.17 µg L-1 are acquired through the detection of P+ as PO+ via oxygen reaction mode, and quantitative recovery was obtained from the spike-recovery test on river water samples containing phosphate ion as an isobaric interferent. In addition, a constant sensitivity per molar concentration was achieved regardless of the compounds due to the powerful ion source of ICP-MS. This property suggests that semi-quantitative analysis of unknown P-bearing compounds is possible from one calibration curve.


Assuntos
Praguicidas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Água , Compostos Organofosforados , Glifosato
6.
RSC Adv ; 13(18): 11884-11888, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37077260

RESUMO

In this study, we used the lock-in thermography technique (LIT) to successfully visualize the single-walled carbon nanotube (CNT) networks during the tensile deformation of CNT/fluoro-rubber (FKM) composites. The LIT images revealed that the CNT network modes in CNT/FKM during strain-loading and unloading can be classified into four sites: (i) disconnection, (ii) recovery after disconnection, (iii) undestroyable, and (iv) no network. Quantitative analysis of the heat intensity of the LIT also indicated that the change in resistance during strain-loading and unloading plays a role in the balance of disconnection and reconstruction of the conductive network. We demonstrated the ability of LIT to effectively visualize and quantify the network state of the composite under deformation, and the LIT results were found to be strongly correlated with the composite properties. These results highlighted the potential of LIT as a valuable tool for composite characterization and material design.

7.
Int J Biol Macromol ; 233: 123520, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739045

RESUMO

Nanocellulose is a remarkable biomaterial. It is a plastic alternative with significance from the viewpoint of carbon offset and neutrality. To efficiently develop nanocellulose-based functional materials, it is imperative to evaluate their dispersion states. In this study, the sedimentation equivalent diameter distributions of cellulose nanocrystals (CNC) are analyzed by centrifugal sedimentation. The diameter distribution is well correlated with that estimated from the widths and the lengths of the CNCs obtained by transmission electron microscopy. Hence, centrifugal sedimentation has the potential to assess the dispersion states of nanocellulose on the nanometer scale and should contribute to basic research and applications.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Materiais Biocompatíveis , Fenômenos Físicos , Microscopia Eletrônica de Transmissão
8.
Nature ; 614(7947): 249-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755173

RESUMO

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.

9.
Nat Nanotechnol ; 18(1): 36-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36411374

RESUMO

Given its innate coupling with wavefunction geometry in solids and its potential to boost the solar energy conversion efficiency, the bulk photovoltaic effect (BPVE) has been of considerable interest in the past decade1-14. Initially discovered and developed in ferroelectric oxide materials2, the BPVE has now been explored in a wide range of emerging materials, such as Weyl semimetals9,10, van der Waals nanomaterials11,12,14, oxide superlattices15, halide perovskites16, organics17, bulk Rashba semiconductors18 and others. However, a feasible experimental approach to optimize the photovoltaic performance is lacking. Here we show that strain-induced polarization can significantly enhance the BPVE in non-centrosymmetric rhombohedral-type MoS2 multilayer flakes (that is, 3R-MoS2). This polarization-enhanced BPVE, termed the piezophotovoltaic effect, exhibits distinctive crystallographic orientation dependence, in that the enhancement mainly manifests in the armchair direction of the 3R-MoS2 lattice while remaining largely intact in the zigzag direction. Moreover, the photocurrent increases by over two orders of magnitude when an in-plane tensile strain of ~0.2% is applied, rivalling that of state-of-the-art materials. This work unravels the potential of strain engineering in boosting the photovoltaic performance, which could potentially promote the exploration of novel photoelectric processes in strained two-dimensional layered materials and their van der Waals heterostructures.

10.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454435

RESUMO

A flat band structure in momentum space is considered key for the realization of novel phenomena. A topological flat band, also known as a drumhead state, is an ideal platform to drive new exotic topological quantum phases. Using angle-resolved photoemission spectroscopy experiments, we reveal the emergence of a highly localized surface state in a topological semimetal BaAl4 and provide its full energy and momentum space topology. We find that the observed surface state is localized in momentum, inside a square-shaped bulk Dirac nodal loop, and in energy, leading to a flat band and a peak in the density of state. These results imply this class of materials as an experimental realization of drumhead surface states and provide an important reference for future studies of the fundamental physics of correlated quantum effects in topological materials.

11.
Proc Natl Acad Sci U S A ; 119(14): e2122313119, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344426

RESUMO

SignificanceThe quantum-mechanical geometric phase of electrons provides various phenomena such as the dissipationless photocurrent generation through the shift current mechanism. So far, the photocurrent generations are limited to above or near the band-gap photon energy, which contradicts the increasing demand of the low-energy photonic functionality. We demonstrate the photocurrent through the optical phonon excitations in ferroelectric BaTiO3 by using the terahertz light with photon energy far below the band gap. This photocurrent without electron-hole pair generation is never explained by the semiclassical treatment of electrons and only arises from the quantum-mechanical geometric phase. The observed photon-to-current conversion efficiency is as large as that for electronic excitation, which can be well accounted for by newly developed theoretical formulation of shift current.

12.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214922

RESUMO

A comprehensive characterization of various carbon nanotube (CNT) yarns provides insight for producing high-performance CNT yarns as well as a useful guide to select the proper yarn for a specific application. Herein we systematically investigate the correlations between the physical properties of six CNT yarns produced by three spinning methods, and their structures and the properties of the constituent CNTs. The electrical conductivity increases in all yarns regardless of the spinning method as the effective length of the constituent CNTs and the density of the yarns increase. On the other hand, the tensile strength shows a much stronger dependence on the packing density of the yarns than the CNT effective length, indicating the relative importance of the interfacial interaction. The contribution of each physical parameter to the yarn properties are quantitatively analyzed by partial least square regression.

13.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947810

RESUMO

We present a study quantitatively demonstrating that the method of synthesis (gas phase, fixed bed, non-fixed bed) represents a determining factor in the level of crystallinity in growing single wall carbon nanotubes (SWCNTs). Using far infrared spectroscopy, the "effective length" (associated with the level of crystallinity) was estimated for CNTs grown using various synthetic methods (lab-produced and supplemented by commercially purchased SWCNTs) as a metric for crystallinity (i.e., defect density). Analysis of the observed "effective lengths" showed that the SWCNTs fell into two general groups: long and short (high and low crystallinity) synthesized by gas-phase methods and all other supported catalyst methods, respectively. Importantly, the "long" group exhibited effective lengths in the range of 700-2200 nm, which was greater than double that of the typical values representing the "short" group (110-490 nm). These results highlight the significant difference in crystallinity. We interpret that the difference in the crystallinity stemmed from stress concentration at the nanotube-catalyst interface during the growth process, which originated from various sources of mismatch in growth rates (e.g., vertically aligned array) as well as impact stress from contact with other substrates during fluidization or rotation. These results are consistent with well-accepted belief, but now are demonstrated quantitatively.

14.
Langmuir ; 37(30): 9144-9150, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288694

RESUMO

Utilizing the nanoscale space created by carbon nanotubes (CNTs) is of importance for applications like energy storage devices, sensors, and functional materials. Gas adsorption is a versatile, quantitative characterization method to analyze nanoscale pore sizes and volumes. Here, we inspected N2 adsorption to the nanospace formed by the bundles of single-walled CNTs with an average nanotube diameter of ca. 2.0 nm and its distributions of 0.7-4.1 nm. Based on comparisons among the as-grown, purified (opened), and heat-treated (closed) CNTs with similar geometric bundle structures, we found that the interstitial channels emerged from a very low relative pressure of approximately 10-8 by removing the impurities from the CNT bundles, which is the first empirical demonstration. These findings can not only be utilized to understand the structures of CNT films, fibers, and bulks but also applied to porous materials science.

15.
Science ; 372(6537): 68-72, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795452

RESUMO

Van der Waals interfaces can be formed by layer stacking without regard to lattice constants or symmetries of individual building blocks. We engineered the symmetry of a van der Waals interface of tungsten selenide and black phosphorus and realized in-plane electronic polarization that led to the emergence of a spontaneous photovoltaic effect. Spontaneous photocurrent was observed along the polar direction and was absent in the direction perpendicular to it. The observed spontaneous photocurrent was explained by a quantum-mechanical shift current that reflects the geometrical and topological electronic nature of this emergent interface. The present results offer a simple guideline for symmetry engineering that is applicable to a variety of van der Waals interfaces.

16.
Proc Natl Acad Sci U S A ; 117(34): 20411-20415, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778597

RESUMO

Lattice defect is a major cause of energy dissipation in conventional electric current due to the drift and diffusion motions of electrons. Different nature of current emerges when noncentrosymmetric materials are excited by light. This current, called the shift current, originates from the change in the Berry connection of electrons' wave functions during the interband optical transition. Here, we demonstrate the defect tolerance of shift current using single crystals of ferroelectric semiconductor antimony sulfoiodide (SbSI). Although the dark conductance spreads over several orders of magnitude in each crystal due to the difference in the density of defect levels, the observed shift current converges to an identical value. We also reveal that the shift current is scarcely disturbed by the surface defects while they drastically suppress the conventional photocurrent. The defect tolerance is a manifestation of the topological nature of shift current, which will be a crucial advantage in optoelectronic applications.

17.
Sci Adv ; 6(29): eaba0509, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832618

RESUMO

Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is a topological invariant known as the Berry monopole charge. The circular photogalvanic effect (CPGE), whereby circular polarized light generates a helicity-dependent photocurrent, is a notable example of a macroscopic property that emerges directly from the topology of the Weyl semimetal band structure. Recently, it was predicted that the amplitude of the CPGE associated with optical transitions near a Weyl node is proportional to its monopole charge. In chiral Weyl systems, nodes of opposite charge are nondegenerate, opening a window of wavelengths where the CPGE resulting from uncompensated Berry charge can emerge. Here, we report measurements of CPGE in the chiral Weyl semimetal RhSi, revealing a CPGE response in an energy window that closes at 0.65 eV, in agreement with the predictions of density functional theory.

18.
Gan To Kagaku Ryoho ; 47(7): 1075-1080, 2020 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-32668855

RESUMO

Cancer cachexia is multifactor syndrome that occurs in 50-80% of cancer patients and accounts for 20% of cancer deaths. We conducted a web questionnaire survey for healthcare professionals(doctors and medical staff), patients and families to clarify the understanding of cancer cachexia. As a result, it was revealed that the understanding of cancer cachexia among patients and families was low. Cancer cachexia was widely recognized by healthcare professionals, but 3 stages of EPCRC was not. Many of healthcare professionals recalled the image of terminal stage of cancer from the term "cancer cachexia", and they lack awareness that cancer cachexia was a disease complication which developed from the early stage of cancer. Furthermore, there were many doctors who were faced with the problem such as a lack of treatment options for cancer cachexia. From these facts, it is necessary to disseminate scientific concept of cancer cachexia and establish standard of care from the early stage.


Assuntos
Caquexia , Neoplasias , Apetite , Caquexia/etiologia , Humanos , Japão , Neoplasias/complicações , Inquéritos e Questionários , Redução de Peso
19.
Nat Nanotechnol ; 15(10): 831-835, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661369

RESUMO

The topological nature of the quantum anomalous Hall effect (QAHE) causes a dissipationless chiral edge current at the sample boundary1,2. Of fundamental interest is whether the chirality of the band structure manifests itself in charge transport properties. Here we report the observation of large non-reciprocal charge transport3 in a magnetic topological insulator, Cr-doped (Bi,Sb)2Te3. When the surface massive Dirac band is slightly carrier doped by a gate voltage, the edge state starts to dissipate and exhibits a current-direction-dependent resistance with a directional difference as large as 26%. The polarity of this diode effect depends on the magnetization direction as well as on the carrier type, electrons or holes. The correlation between the non-reciprocal resistance and the Hall resistance indicates that the non-reciprocity originates from the interplay between the chiral edge state and the Dirac surface state.

20.
Gan To Kagaku Ryoho ; 47(6): 947-953, 2020 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-32541173

RESUMO

Appetite loss and weight loss associated with cancer have negative effects on the quality of life and OS of cancer patients. We conducted a web questionnaire survey for healthcare professionals(doctors and medical staff), patients and families to clarify the problem awareness for appetite loss and weight loss associated with cancer. As a result, it turned out that families were more concerned about patients' appetite loss and weight loss, and nearly half of patients haven't consulted their symptoms to healthcare professionals, and it meant that patients missed the opportunity to receive medical intervention due to no consultation. While healthcare professionals have a strong desire to provide dedicated treatment for appetite loss and weight loss in cancer patients, the proportion of patients and families who replied their symptom had improved with the intervention was low. In the near future, it will be necessary to enlighten the importance of symptom management to patients and families and pay attention to their symptom change for healthcare professionals.


Assuntos
Caquexia , Neoplasias , Apetite , Conscientização , Caquexia/etiologia , Humanos , Japão , Neoplasias/complicações , Qualidade de Vida , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...