Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Behav Neurosci ; 35: 31-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28864972

RESUMO

Oxytocin is a hypothalamic neuropeptide first recognized as a regulator of parturition and lactation which has recently gained attention for its ability to modulate social behaviors. In this chapter, we review several aspects of the oxytocinergic system, focusing on evidence for release of oxytocin and its receptor distribution in the cortex as the foundation for important networks that control social behavior. We examine the developmental timeline of the cortical oxytocin system as demonstrated by RNA, autoradiographic binding, and protein immunohistochemical studies, and describe how that might shape brain development and behavior. Many recent studies have implicated oxytocin in cognitive processes such as processing of sensory stimuli, social recognition, social memory, and fear. We review these studies and discuss the function of oxytocin in the young and adult cortex as a neuromodulator of central synaptic transmission and mediator of plasticity.


Assuntos
Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Comportamento Animal/fisiologia , Humanos , Vias Neurais/metabolismo , Neurônios/metabolismo , Comportamento Social
2.
J Neurosci ; 36(8): 2517-35, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911697

RESUMO

Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition.


Assuntos
Córtex Auditivo/metabolismo , Cognição/fisiologia , Rede Nervosa/metabolismo , Receptores de Ocitocina/biossíntese , Comportamento Social , Sequência de Aminoácidos , Animais , Córtex Auditivo/química , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Rede Nervosa/química , Receptores de Ocitocina/análise , Receptores de Ocitocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA