Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678141

RESUMO

Nutrition affects the early stages of disease development, but the mechanisms remain poorly understood. High-throughput proteomic methods are being used to generate data and information on the effects of nutrients, foods, and diets on health and disease processes. In this report, a novel machine reading pipeline was used to identify all articles and abstracts on proteomics, diet, food, and nutrition in humans. The resulting proteomic corpus was further analyzed to produce seven clusters of "thematic" content defined as documents that have similar word content. Examples of publications from several of these clusters were then described in a similar way to a typical descriptive review.


Assuntos
Dieta , Proteômica , Humanos , Proteômica/métodos , Alimentos , Estado Nutricional , Nutrientes
2.
Nat Commun ; 10(1): 5215, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740673

RESUMO

Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous predisposing genetic risk factors have been identified, the biological mechanisms underlying this complex phenotype are not fully elucidated. Here we introduce a systems biology approach based on network analysis to investigate deregulated biological processes and subsequently identify drug repurposing candidates. A proximity score describing the interaction between drugs and pathways is defined by combining topological and functional similarities. The results of this computational framework highlight a prominent role of the immune system in metabolic syndrome and suggest a potential use of the BTK inhibitor ibrutinib as a novel pharmacological treatment. An experimental validation using a high fat diet-induced obesity model in zebrafish larvae shows the effectiveness of ibrutinib in lowering the inflammatory load due to macrophage accumulation.


Assuntos
Redes Reguladoras de Genes , Síndrome Metabólica/genética , Preparações Farmacêuticas/metabolismo , Transdução de Sinais/genética , Adenina/análogos & derivados , Animais , Dieta Hiperlipídica , Reposicionamento de Medicamentos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Síndrome Metabólica/tratamento farmacológico , Especificidade de Órgãos/genética , Piperidinas , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Reprodutibilidade dos Testes , Peixe-Zebra/metabolismo
3.
Mol Nutr Food Res ; 62(10): e1701008, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29665620

RESUMO

SCOPE: Chronic inflammation and hypoadiponectinemia are characteristics of obesity-induced insulin resistance (IR). The effect of an anti-inflammatory nutrition supplement (AINS) on IR and adiponectin biology in overweight adolescents was investigated. The secondary objective was to examine the extent to which individuals' biomarker profiles, derived from baseline phenotypes, predicted response or not to the AINS. Additionally, the impact of DNA methylation on intervention efficacy was assessed. METHODS AND RESULTS: Seventy overweight adolescents (13-18 years) were recruited to this randomized controlled crossover trial. Participants received an AINS (long chain n-3 PUFA, vitamin C, α-tocopherol, green tea extract, and lycopene) and placebo for 8 weeks each. Homeostatic model assessment (HOMA)-IR, adiponectin, inflammatory profiles, and DNA methylation were assessed. HOMA-IR was unchanged in the total cohort. High-molecular-weight (HMW) adiponectin was maintained following the AINS while it decreased over time following the placebo intervention. HOMA-IR decreased in 40% of subjects (responders) following the AINS. Responders' pretreatment phenotype was characterized by higher HOMA-IR, total and LDL cholesterol, but similar BMI in comparison to nonresponders. HMW adiponectin response to the AINS was associated with bidirectional modulation of adipogenic gene methylation. CONCLUSION: The AINS modulated adiponectin biology, an early predictor of type 2 diabetes risk, was associated with bidirectional modulation of adipogenic gene methylation in weight-stable overweight adolescents. HOMA-IR decreased in a sub-cohort of adolescents with an adverse metabolic phenotype. Thus, suggesting that more stratified or personalized nutrition approaches may enhance efficacy of dietary interventions.


Assuntos
Adiponectina/sangue , Inflamação/dietoterapia , Resistência à Insulina , Obesidade/complicações , Adipogenia/genética , Adolescente , Biomarcadores/sangue , Metilação de DNA , Suplementos Nutricionais , Feminino , Humanos , Lipídeos/sangue , Masculino , Obesidade/dietoterapia , Obesidade Infantil , Resultado do Tratamento
4.
Sci Rep ; 8(1): 2232, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396566

RESUMO

Polyphenol-rich foods are part of many nutritional interventions aimed at improving health and preventing cardiometabolic diseases (CMDs). Polyphenols have oxidative, inflammatory, and/or metabolic effects. Research into the chemistry and biology of polyphenol bioactives is prolific but knowledge of their molecular interactions with proteins is limited. We mined public data to (i) identify proteins that interact with or metabolize polyphenols, (ii) mapped these proteins to pathways and networks, and (iii) annotated functions enriched within the resulting polyphenol-protein interactome. A total of 1,395 polyphenols and their metabolites were retrieved (using Phenol-Explorer and Dictionary of Natural Products) of which 369 polyphenols interacted with 5,699 unique proteins in 11,987 interactions as annotated in STITCH, Pathway Commons, and BindingDB. Pathway enrichment analysis using the KEGG repository identified a broad coverage of significant pathways of low specificity to particular polyphenol (sub)classes. When compared to drugs or micronutrients, polyphenols have pleiotropic effects across many biological processes related to metabolism and CMDs. These systems-wide effects were also found in the protein interactome of the polyphenol-rich citrus fruits, used as a case study. In sum, these findings provide a knowledgebase for identifying polyphenol classes (and polyphenol-rich foods) that individually or in combination influence metabolism.


Assuntos
Bases de Dados Factuais , Preparações de Plantas/metabolismo , Polifenóis/metabolismo , Proteínas/metabolismo , Humanos , Plantas/química , Mapeamento de Interação de Proteínas
5.
Mol Nutr Food Res ; 62(6): e1700613, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368422

RESUMO

SCOPE: Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. METHODS AND RESULTS: A 6-week multivitamin/mineral intervention is conducted in 9-13 year olds. Participants (136) are (i) their own control (n-of-1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6-week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. CONCLUSIONS: The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals.


Assuntos
Micronutrientes/administração & dosagem , Vitaminas/sangue , Adolescente , Criança , Dislipidemias/sangue , Comportamento Alimentar , Feminino , Humanos , Individualidade , Masculino
6.
Sci Rep ; 7: 41231, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112248

RESUMO

Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation.


Assuntos
Ceramidas/metabolismo , Resistência à Insulina , Esfingolipídeos/metabolismo , Animais , Simulação por Computador , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Esfingosina N-Aciltransferase/metabolismo
7.
Sci Rep ; 6: 28851, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385551

RESUMO

The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.


Assuntos
Adipócitos/citologia , Adipogenia , Biologia Computacional/métodos , Biologia de Sistemas , Diferenciação Celular , Simulação por Computador , Regulação da Expressão Gênica , Humanos , Internet , Fatores de Tempo , Transcriptoma
8.
BMC Genomics ; 17: 106, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861690

RESUMO

BACKGROUND: A high caloric diet, in conjunction with low levels of physical activity, promotes obesity. Many studies are available regarding the relation between dietary saturated fats and the etiology of obesity, but most focus on liver, muscle and white adipose tissue. Furthermore, the majority of transcriptomic studies seek to identify linear effects of an external stimulus on gene expression, although such an assumption does not necessarily hold. Our work assesses the dose-dependent effects of dietary fat intake on differential gene expression in the proximal, middle and distal sections of the small intestine in C57BL/6J mice. Gene expression is analyzed in terms of either linear or nonlinear responses to fat intake. RESULTS: The highest number of differentially expressed genes was observed in the middle section. In all intestine sections, most of the identified processes exhibited a linear response to increasing fat intake. The relative importance of logarithmic and exponential responses was higher in the proximal and distal sections, respectively. Functional enrichment analysis highlighted a constantly linear regulation of acute-phase response along the whole small intestine, with up-regulation of Serpina1b. The study of gene expression showed that exponential down-regulation of cholesterol transport in the middle section is coupled with logarithmic up-regulation of cholesterol homeostasis. A shift from linear to exponential response was observed in genes involved in the negative regulation of caspase activity, from middle to distal section (e.g., Birc5, up-regulated). CONCLUSIONS: The transcriptomic signature associated with inflammatory processes preserved a linear response in the whole small intestine (e.g., up-regulation of Serpina1b). Processes related to cholesterol homeostasis were particularly active in the middle small intestine and only the highest fat intake down-regulated cholesterol transport and efflux (with a key role played by the down-regulation of ATP binding cassette transporters). Characterization of nonlinear patterns of gene expression triggered by different levels of dietary fat is an absolute novelty in intestinal studies. This approach helps identifying which processes are overloaded (i.e., positive, logarithmic regulation) or arrested (i.e., negative, exponential regulation) in response to excessive fat intake, and can shed light on the relationships linking lipid intake to obesity and its associated molecular disturbances.


Assuntos
Gorduras na Dieta , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 6: 19633, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26777674

RESUMO

The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900's at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases.


Assuntos
Coenzimas/metabolismo , Suscetibilidade a Doenças , Micronutrientes , Modelos Biológicos , Estado Nutricional , Proteínas/metabolismo , Bases de Dados Genéticas , Humanos , Especificidade de Órgãos/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
10.
Microbiome ; 3: 41, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399409

RESUMO

BACKGROUND: The human intestinal microbiota changes from being sparsely populated and variable to possessing a mature, adult-like stable microbiome during the first 2 years of life. This assembly process of the microbiota can lead to either negative or positive effects on health, depending on the colonization sequence and diet. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. This study aims at better understanding the effects of microbial community and feeding mode (breast-fed and formula-fed) on the immune system, by comparing intestinal metagenomic and transcriptomic data from breast-fed and formula-fed babies. RESULTS: We re-analyzed a published metagenomics and host gene expression dataset from a systems biology perspective. Our results show that breast-fed samples co-express genes associated with immunological, metabolic, and biosynthetic activities. The diversity of the microbiota is higher in formula-fed than breast-fed infants, potentially reflecting the weaker dependence of infants on maternal microbiome. We mapped the microbial composition and the expression patterns for host systems and studied their relationship from a systems biology perspective, focusing on the differences. CONCLUSIONS: Our findings revealed that there is co-expression of more genes in breast-fed samples but lower microbial diversity compared to formula-fed. Applying network-based systems biology approach via enrichment of microbial species with host genes revealed the novel key relationships of the microbiota with immune and metabolic activity. This was supported statistically by data and literature.


Assuntos
Aleitamento Materno , Sistema Imunitário/fisiologia , Leite Humano/imunologia , Biodiversidade , Análise por Conglomerados , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lactente , Metagenoma , Transcriptoma
11.
Mol Nutr Food Res ; 59(11): 2279-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26314729

RESUMO

SCOPE: Acute metabolic challenges provide an opportunity to identify mechanisms of metabolic and nutritional health. In this study, we assessed the transcriptomic response to oral glucose and lipid challenges in a cohort of individuals ranging in age and BMI. The main goal is to identify whether BMI can mediate the metabolic and transcriptional response to dietary challenges, and the differences between lipid and glucose tests. METHODS AND RESULTS: Two hundred fourteen healthy adults were assigned to the challenges and twenty-three individuals were selected for further transcriptomic proofing, using microarray analysis of peripheral blood mononuclear cells. Through linear-mixed models and network analysis, different sets of transcripts and pathways were identified that responded to the challenges depending on BMI. Different transcripts that responded to the lipid and glucose tests, independently of BMI, were also identified. In the network analysis, inflammatory and adhesion processes were strongly represented for both challenges. CONCLUSION: Our results indicate that BMI is strongly linked to the transcriptomic and metabolic response to acute challenges. The emerging biological processes are mainly inflammation-related pathways, highlighting an interconnection between obesity, inflammation/adhesion, and response to nutritional challenge. The comparison between lipid and glucose challenges shows how these trigger a substantially different molecular response.


Assuntos
Índice de Massa Corporal , Dieta , Inflamação/etiologia , Adolescente , Adulto , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Transcriptoma
12.
Diabetes ; 64(6): 2116-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626736

RESUMO

Saturated fatty acid (SFA) high-fat diets (HFDs) enhance interleukin (IL)-1ß-mediated adipose inflammation and insulin resistance. However, the mechanisms by which different fatty acids regulate IL-1ß and the subsequent effects on adipose tissue biology and insulin sensitivity in vivo remain elusive. We hypothesized that the replacement of SFA for monounsaturated fatty acid (MUFA) in HFDs would reduce pro-IL-1ß priming in adipose tissue and attenuate insulin resistance via MUFA-driven AMPK activation. MUFA-HFD-fed mice displayed improved insulin sensitivity coincident with reduced pro-IL-1ß priming, attenuated adipose IL-1ß secretion, and sustained adipose AMPK activation compared with SFA-HFD-fed mice. Furthermore, MUFA-HFD-fed mice displayed hyperplastic adipose tissue, with enhanced adipogenic potential of the stromal vascular fraction and improved insulin sensitivity. In vitro, we demonstrated that the MUFA oleic acid can impede ATP-induced IL-1ß secretion from lipopolysaccharide- and SFA-primed cells in an AMPK-dependent manner. Conversely, in a regression study, switching from SFA- to MUFA-HFD failed to reverse insulin resistance but improved fasting plasma insulin levels. In humans, high-SFA consumers, but not high-MUFA consumers, displayed reduced insulin sensitivity with elevated pycard-1 and caspase-1 expression in adipose tissue. These novel findings suggest that dietary MUFA can attenuate IL-1ß-mediated insulin resistance and adipose dysfunction despite obesity via the preservation of AMPK activity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Proteínas de Transporte/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Monoinsaturados/farmacologia , Resistência à Insulina/fisiologia , Interleucina-1beta/metabolismo , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
13.
Genes Nutr ; 9(4): 408, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24879315

RESUMO

The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6-14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein-protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene-nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions.

14.
Genes Nutr ; 9(3): 403, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24760553

RESUMO

Micronutrient research typically focuses on analyzing the effects of single or a few nutrients on health by analyzing a limited number of biomarkers. The observational study described here analyzed micronutrients, plasma proteins, dietary intakes, and genotype using a systems approach. Participants attended a community-based summer day program for 6-14 year old in 2 years. Genetic makeup, blood metabolite and protein levels, and dietary differences were measured in each individual. Twenty-four-hour dietary intakes, eight micronutrients (vitamins A, D, E, thiamin, folic acid, riboflavin, pyridoxal, and pyridoxine) and 3 one-carbon metabolites [homocysteine (Hcy), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH)], and 1,129 plasma proteins were analyzed as a function of diet at metabolite level, plasma protein level, age, and sex. Cluster analysis identified two groups differing in SAM/SAH and differing in dietary intake patterns indicating that SAM/SAH was a potential marker of nutritional status. The approach used to analyze genetic association with the SAM/SAH metabolites is called middle-out: SNPs in 275 genes involved in the one-carbon pathway (folate, pyridoxal/pyridoxine, thiamin) or were correlated with SAM/SAH (vitamin A, E, Hcy) were analyzed instead of the entire 1M SNP data set. This procedure identified 46 SNPs in 25 genes associated with SAM/SAH demonstrating a genetic contribution to the methylation potential. Individual plasma metabolites correlated with 99 plasma proteins. Fourteen proteins correlated with body mass index, 49 with group age, and 30 with sex. The analytical strategy described here identified subgroups for targeted nutritional interventions.

15.
Biomed Res Int ; 2014: 686505, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551850

RESUMO

Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI) to model the functional network of NDs. The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv) inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration.


Assuntos
Doenças Neurodegenerativas/fisiopatologia , Mapas de Interação de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Receptores Toll-Like/fisiologia , Biologia Computacional , Mineração de Dados , Bases de Dados Factuais , Humanos , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Receptores Toll-Like/metabolismo
16.
Mol Nutr Food Res ; 58(4): 808-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24170299

RESUMO

SCOPE: Food and nutrition studies often require accessing metabolically active tissues, including adipose tissue. This can involve invasive biopsy procedures that can be a limiting factor in study design. In contrast, peripheral blood mononuclear cells (PBMCs) are a population of circulating immune cells that are easily accessible through venipuncture. As transcriptomics is of growing importance in food and metabolism research, understanding the transcriptomic relationship between these tissue types can provide insight into the utility of PBMCs in this field. METHODS AND RESULTS: We examine this relationship within eight subjects, in two postprandial states (following oral lipid tolerance test and oral glucose tolerance test). Multivariate analysis techniques were used to examine variation between tissues, samples, and subjects in order to define which genes havecommon/disparate expression profiles associated with highly defined metabolic phenotypes. We demonstrate global similarities in gene expression between PBMCs and white adipose tissue, irrespective of the metabolic challenge type. Closer examination of individual genes revealed this similarity to be strongest in pathways related to immune response/inflammation. Notably, the expression of metabolism-related nuclear receptors, including PPARs, LXR, etc. was discordant between tissues CONCLUSION: The PBMC transcriptome may therefore provide a unique insight into the inflammatory component of metabolic health, as opposed to directly reflecting the metabolic component of the adipose tissue transcriptome.


Assuntos
Tecido Adiposo Branco/metabolismo , Biomarcadores/metabolismo , Leucócitos Mononucleares/imunologia , Transcriptoma , Adulto , Fatores Etários , Aminoácidos/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Feminino , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Período Pós-Prandial
17.
Front Genet ; 4: 205, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24187547

RESUMO

We review here the status of human type 2 diabetes studies from a genetic, epidemiological, and clinical (intervention) perspective. Most studies limit analyses to one or a few omic technologies providing data of components of physiological processes. Since all chronic diseases are multifactorial and arise from complex interactions between genetic makeup and environment, type 2 diabetes mellitus (T2DM) is a collection of sub-phenotypes resulting in high fasting glucose. The underlying gene-environment interactions that produce these classes of T2DM are imperfectly characterized. Based on assessments of the complexity of T2DM, we propose a systems biology approach to advance the understanding of origin, onset, development, prevention, and treatment of this complex disease. This systems-based strategy is based on new study design principles and the integrated application of omics technologies: we pursue longitudinal studies in which each subject is analyzed at both homeostasis and after (healthy and safe) challenges. Each enrolled subject functions thereby as their own case and control and this design avoids assigning the subjects a priori to case and control groups based on limited phenotyping. Analyses at different time points along this longitudinal investigation are performed with a comprehensive set of omics platforms. These data sets are generated in a biological context, rather than biochemical compound class-driven manner, which we term "systems omics."

18.
J Nutr Biochem ; 24(5): 788-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22841542

RESUMO

A subacute inflammatory phenotype is implicated in the pathology of insulin resistance (IR) and type 2 diabetes mellitus. Interleukin (IL)-1α and IL-1ß are produced by innate immune cells, including macrophages, and mediate their inflammatory response through the IL-1 type I receptor (IL-IRI). This study sought to understand the transcriptomic signature of adipose tissue in obese IL-1RI(-/-) mice. Following dietary intervention, markers of insulin sensitivity and inflammation in adipose tissue were determined, and gene expression was assessed with microarrays. IL-1RI(-/-) mice fed a high-fat diet (HFD) had significantly lower plasma inflammatory cytokine concentrations than wild-type mice. Metabolic network analysis of transcriptomic effects identified up-regulation and co-expression of genes involved in lipolysis, lipogenesis and tricarboxylic acid (TCA) cycle. Further assessment of gene expression in a network of protein interactions related to innate immunity highlighted Stat3 as a potential transcriptional regulator of IL-1 signalling. The complex, downstream effects of IL-1 signalling through the IL-1RI receptor remain poorly defined. Using network-based analyses of transcriptomic signatures in IL-1RI(-/-) mice, we have identified expression changes in genes involved in lipid cycling and TCA cycle, which may be more broadly indicative of a restoration of mitochondrial function in the context of HFD. Our results also highlight a potential role for Stat3 in linking IL-1 signalling to adipogenesis and IR.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Expressão Gênica , Receptores de Interleucina-1/genética , Transcriptoma , Doença Aguda , Adipogenia/genética , Animais , Biomarcadores/sangue , Ciclo do Ácido Cítrico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Imunidade Inata , Inflamação/genética , Resistência à Insulina/genética , Interleucina-1/sangue , Lipogênese , Macrófagos/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Análise em Microsséries , Obesidade/genética , Obesidade/patologia , Fenótipo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima
19.
J Nutr Biochem ; 24(2): 401-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22626767

RESUMO

Conjugated linoleic acid (CLA) is found naturally in meat and dairy products, and represents a potential therapeutic functional nutrient. However, given the discrepancies in isomer composition and concentration, controversy surrounds its proposed antidiabetic, antiobesity effects. This study focused on the effects of CLA-enriched beef (composed predominantly of c9, t11-CLA) in two separate models of metabolic disease: proatherosclerotic ApoE(-/-) mice and diabetic, leptin-deficient ob/ob mice. Animals were fed CLA-enriched beef for 28 days, and markers of the metabolic syndrome and atherosclerosis were assessed. Comprehensive hepatic transcriptomic analysis was completed to understand divergent metabolic effects of CLA. CLA-enriched beef significantly reduced plasma glucose, insulin, nonesterified fatty acid and triacylglycerol and increased adiponectin levels in ob/ob mice. In contrast, plasma lipid profiles and glucose homeostasis deteriorated and promoted atherosclerosis following the CLA-enriched beef diet in ApoE(-/-) mice. Hepatic transcriptomic profiling revealed divergent effects of CLA-enriched beef on insulin signaling and lipogenic pathways, which were adversely affected in ApoE(-/-) mice. This study demonstrated clear divergence in the effects of CLA. CLA-enriched beef improved metabolic flexibility in ob/ob mice, resulting in enhanced insulin sensitivity. However, CLA-enriched diet increased expression of lipogenic genes, resulting in inefficient fatty acid storage which increases lipotoxicity in peripheral organs, and led to profound metabolic dysfunction in ApoE(-/-) mice. While CLA may have potential health effects, in some circumstances, caution must be exercised in presenting this bioactive lipid as a potential functional food for the treatment of metabolic disease.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Produtos da Carne , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Aterosclerose/sangue , Bovinos , Dieta , Modelos Animais de Doenças , Ácidos Graxos Insaturados/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Leptina/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Produtos da Carne/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos
20.
Clin Transl Gastroenterol ; 3: e12, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23238211

RESUMO

OBJECTIVES: Obesity is linked to increased mortality from many cancer types, and esophageal adenocarcinoma (EAC) displays one of the strongest epidemiological associations. The aims of this study are to dissect molecular pathways linking obesity with EAC and to determine if obesity is linked to increased aggressiveness of this disease. METHODS: Affymetrix microarrays identified altered signaling pathways in an EAC cell line following coculture with visceral adipose tissue or isolated adipocytes from viscerally obese EAC patients (n=6). Differentially expressed genes were subsequently investigated in patient tumor biopsies by quantitative reverse transcriptase PCR and examined with respect to obesity status, tumor biology, and patient survival. RESULTS: Visceral adipose tissue induced expression of genes involved in epithelial mesenchymal transition (EMT), plasminogen activator inhibitor (PAI)-1, and transcription factor SNAI2, in an EAC cell line. In EAC patient tumor biopsies from obese patients, we noted elevated expression of these genes, together with reduced expression of epithelial marker E-cadherin. SNAI2 was associated with EAC prognosis. CONCLUSIONS: Expression of EMT genes, PAI-1 and SNAI2, was elevated in tumors of obese EAC patients, and SNAI2 was associated with poor survival. Genes deregulated in obesity and associated with prognosis may represent potential targets for treatment stratification of obese EAC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...