Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1328815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601090

RESUMO

Introduction: Optical Projection Tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high resolution optical imaging techniques, ideally suited for ex vivo 3D whole mouse brain imaging. Although they exhibit high specificity for their targets, the anatomical detail provided by tissue autofluorescence remains limited. Methods: T1-weighted images were acquired from 19 BABB or DBE cleared brains to create an MR template using serial longitudinal registration. Afterwards, fluorescent OPT and LSFM images were coregistered/normalized to the MR template to create fusion images. Results: Volumetric calculations revealed a significant difference between BABB and DBE cleared brains, leading to develop two optimized templates, with associated tissue priors and brain atlas, for BABB (OCUM) and DBE (iOCUM). By creating fusion images, we identified virus infected brain regions, mapped dopamine transporter and translocator protein expression, and traced innervation from the eye along the optic tract to the thalamus and superior colliculus using cholera toxin B. Fusion images allowed for precise anatomical identification of fluorescent signal in the detailed anatomical context provided by MR. Discussion: The possibility to anatomically map fluorescent signals on magnetic resonance (MR) images, widely used in clinical and preclinical neuroscience, would greatly benefit applications of optical imaging of mouse brain. These specific MR templates for cleared brains enable a broad range of neuroscientific applications integrating 3D optical brain imaging.

2.
Nat Commun ; 14(1): 2007, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037810

RESUMO

Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar-/-) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI. Infection is limited to grey matter of sensory systems in wildtype mice, but extends into white matter, meninges and choroid plexus in Ifnar-/- mice. Cells in wildtype display strong type I and II IFN responses, likely due to Ifnb expressing astrocytes, infiltration of macrophages and Ifng-expressing CD8+ NK cells, whereas in Ifnar-/-, the absence of this response contributes to a shift in cellular tropism towards non-activated resident microglia. Multimodal imaging-transcriptomics exemplifies a powerful way to characterize mechanisms of viral pathogenesis and tropism.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Interferon Tipo I , Carrapatos , Camundongos , Animais , Interferon Tipo I/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tropismo , Carrapatos/metabolismo , Camundongos Endogâmicos C57BL
3.
Commun Biol ; 4(1): 1063, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508173

RESUMO

The possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context. We demonstrate the utility of the approach by providing volumetric data and 3D distribution of hundreds of thousands of islets of Langerhans within the human pancreas. By assessments of pancreata from non-diabetic and type 2 diabetic individuals, we display previously unrecognized features of the human islet mass distribution and pathology. As such, this method may contribute not only in unraveling new information of the pancreatic anatomy/pathophysiology, but it may be translated to essentially any antibody marker or organ system.


Assuntos
Imageamento Tridimensional , Ilhotas Pancreáticas/citologia , Idoso , Humanos , Masculino
4.
Materials (Basel) ; 14(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208373

RESUMO

The aim of the present work is to investigate the synthesis of Ti-Nb alloy films obtained by the physical vapor deposition (PVD) magnetron sputtering of Nb films on Ti substrates, followed by low-energy high-current electron beam (LEHCEB) alloying treatment. Ti-Nb alloys were synthetized under two different regimes, one by varying the deposited amount of Nb (from 25 to 150 nm) and treating samples with low applied voltages and a number of pulses (three pulses at either 20 or 25 kV), the second by setting the amount of Nb (100 nm) and alloying it at a higher applied voltage with a different number of pulses (from 10 to 50 at 25 and 30 kV). The synthetized Ti-Nb alloys were characterized by XRD and GDOES for phase identification and chemical composition; SEM and optical microscopy were employed for morphology evaluation; compositional investigation was done by EDS analysis and mechanical properties were evaluated by microindentation tests. LEHCEB treatment led to the formation of metastable phases (α', α″ and ß) which, together with the grain refinement effect, was responsible for improved mechanical properties.

5.
Commun Biol ; 3(1): 541, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999405

RESUMO

Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of ß-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced ß-cell destruction predominantly affects large islets in the pancreatic core. Further, we show that hyperglycemic STZ-treated mice still harbor a large pool of remaining ß-cells but display pancreas-wide downregulation of glucose transporter type 2 (GLUT2). Islet gene expression studies confirmed this downregulation and revealed impaired ß-cell maturity. Reversing hyperglycemia by islet transplantation partially restored the expression of markers for islet function, but not BCM. Jointly our results indicate that STZ-induced hyperglycemia results from ß-cell dysfunction rather than ß-cell ablation and that hyperglycemia in itself sustains a negative feedback loop restraining islet function recovery.


Assuntos
Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Transportador de Glucose Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
6.
Sci Rep ; 10(1): 18246, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106532

RESUMO

The possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with over 90% of the patients dying within 5 years after diagnosis. Cure can be achieved by surgical resection, but the efficiency remains drearily low. Here we demonstrate a method that without prior immunohistochemical labelling provides insight into the 3D microenvironment and spread of PDAC and premalignant cysts in intact surgical biopsies. The method is based solely on the autofluorescent properties of the investigated tissues using optical projection tomography and/or light-sheet fluorescence microscopy. It does not interfere with subsequent histopathological analysis and may facilitate identification of tumor-free resection margins within hours. We further demonstrate how the developed approach can be used to assess individual volumes and numbers of the islets of Langerhans in unprecedently large biopsies of human pancreatic tissue, thus providing a new means by which remaining islet mass may be assessed in settings of diabetes. Generally, the method may provide a fast approach to provide new anatomical insight into pancreatic pathophysiology.


Assuntos
Carcinoma Ductal Pancreático/patologia , Ilhotas Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Ilhotas Pancreáticas/diagnóstico por imagem , Imagem Óptica/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Óptica/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...