Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 15(1): 2149055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36458900

RESUMO

Nerve growth factor (NGF) has emerged as a key driver of pain perception in several chronic pain conditions, including osteoarthritis (OA), and plays an important role in the generation and survival of neurons. Although anti-NGF antibodies improve pain control and physical function in patients with clinical chronic pain conditions, anti-NGF IgGs are associated with safety concerns such as effects on fetal and postnatal development and the risk of rapidly progressive osteoarthritis. To overcome these drawbacks, we generated a novel anti-NGF PEGylated Fab' antibody. The anti-NGF PEGylated Fab' showed specific binding to and biological inhibitory activity against NGF, and analgesic effects in adjuvant-induced arthritis model mice in a similar manner to an anti-NGF IgG. In collagen-induced arthritis model mice, the anti-NGF PEGylated Fab' showed higher accumulation in inflamed foot pads than the anti-NGF IgG. In pregnant rats and non-human primates, the anti-NGF PEGylated Fab' was undetectable in fetuses, while the anti-NGF IgG was detected and caused abnormal postnatal development. The PEGylated Fab' and IgG also differed in their ability to form immune complexes in vitro. Additionally, while both PEGylated Fab' and IgG showed analgesic effects in sodium monoiodoacetate-induced arthritic model rats, their effects on edema were surprisingly quite different. While the anti-NGF IgG promoted edema over time, the anti-NGF PEGylated Fab' did not. The anti-NGF PEGylated Fab' (ASP6294) may thus be a potential therapeutic candidate with lower risk of adverse effects for various diseases in which NGF is involved such as OA and chronic back pain.


Assuntos
Analgesia , Artrite Experimental , Dor Crônica , Osteoartrite , Feminino , Gravidez , Ratos , Camundongos , Animais , Dor Crônica/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Analgésicos , Polietilenoglicóis/efeitos adversos , Imunoglobulina G
2.
Int Immunopharmacol ; 64: 201-207, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30195818

RESUMO

In renal transplant patients, using mycophenolate mofetil (MMF) with calcineurin inhibitors (CNIs; cyclosporine and tacrolimus [TAC]) has led to a significant improvement in graft survival. However, reducing or withholding MMF due to its gastrointestinal adverse events increases rejection risk. CNI-sparing strategies are important to avoid CNI-related nephrotoxicity in clinical settings. Here, we investigated AS2553627, a JAK inhibitor replacing MMF in combination with a sub-therapeutic dose of TAC to treat allograft rejection in a monkey model. AS2553627 inhibited proliferation of IL-2 stimulated T cells with little species difference between monkeys and humans. In MMF monotherapy, oral administration of 20 or 40 mg/kg/day prolonged graft survival with median survival times (MSTs) of 16.5 days and 33 days, respectively, whereas untreated animals showed MST of 6 days. In MMF/TAC (1 mg/kg/day, p.o.) combination therapy, pharmacokinetic analysis indicated that MMF 20 mg/kg/day achieved the clinical target AUC0-24h and prolonged renal allograft survival, with MST of 24 days. Oral administration of AS2553627 0.24 mg/kg/day in combination with TAC significantly prolonged renal allograft survival to MST of >90 days with low plasma creatinine levels. Histopathological analysis revealed that acute T cell-mediated rejection events such as vasculitis and interstitial mononuclear cell infiltration were significantly inhibited in AS2553627/TAC-treated allografts compared with MMF/TAC-treated allografts. All AS2553627/TAC-treated monkeys surviving >90 days exhibited less interstitial fibrosis/tubular atrophy than monkeys in the MMF/TAC group. These results suggest that AS2553627 replacing MMF is an attractive CNI-sparing strategy to prevent renal allograft rejection.


Assuntos
Rejeição de Enxerto/prevenção & controle , Imunossupressores/administração & dosagem , Transplante de Rim/efeitos adversos , Ácido Micofenólico/administração & dosagem , Piperidinas/administração & dosagem , Pirróis/administração & dosagem , Tacrolimo/administração & dosagem , Animais , Ativação Linfocitária/efeitos dos fármacos , Macaca fascicularis , Masculino , Transplante Homólogo
3.
Bioorg Med Chem ; 25(20): 5311-5326, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28789911

RESUMO

Janus kinases (JAKs) play a crucial role in cytokine mediated signal transduction. JAK inhibitors have emerged as effective immunomodulative agents for the prevention of transplant rejection. We previously reported that the tricyclic imidazo-pyrrolopyridinone 2 is a potent JAK inhibitor; however, it had poor oral absorption due to low membrane permeability. Here, we report the structural modification of compound 2 into the tricyclic dipyrrolopyridine 18a focusing on reduction of polar surface area (PSA), which exhibits potent in vitro activity, improved membrane permeability and good oral bioavailability. Compound 18a showed efficacy in rat heterotopic cardiac transplants model.


Assuntos
Adjuvantes Imunológicos/farmacologia , Descoberta de Drogas , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Administração Oral , Animais , Disponibilidade Biológica , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração , Humanos , Janus Quinases/metabolismo , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Piridinas/administração & dosagem , Piridinas/química , Pirróis/administração & dosagem , Pirróis/química , Ratos , Ratos Endogâmicos ACI , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Relação Estrutura-Atividade
4.
Eur J Pharmacol ; 796: 69-75, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27993641

RESUMO

Janus family kinases (JAKs) are essential molecules for cytokine responses and attractive targets for the treatment of transplant rejection and autoimmune diseases. Several JAK inhibitors have shown demonstrable effects on acute rejection in experimental cardiac transplant models. However, little is known about the potential benefits of JAK inhibitors on chronic rejection outcomes such as vasculopathy and fibrosis. Here, we examined the pharmacological profile of a novel JAK inhibitor, AS2553627, and explored its therapeutic potential in chronic rejection as well as acute rejection in a rat cardiac transplant model. AS2553627 potently inhibited JAK kinases but showed no inhibition of other kinases, including TCR-associated molecules. The compound also suppressed proliferation of IL-2 stimulated human and rat T cells. In a rat cardiac transplant model, oral administration of AS2553627 alone or co-administration with a sub-therapeutic dose of tacrolimus effectively prolonged cardiac allograft survival, suggesting the efficacy in treating acute rejection. To evaluate the effect on chronic rejection, recipient rats were administered a therapeutic dose of tacrolimus for 90 days. In combination with tacrolimus, AS2553627 significantly reduced cardiac allograft vasculopathy and fibrosis that tacrolimus alone did not inhibit. AS2553627 at the effective dose in rat transplantation models did not significantly reduce reticulocyte counts in peripheral whole blood after in vivo erythropoietin administration, indicating a low risk for anemia. These results suggest that AS2553627 may be a therapeutic candidate for the prevention of not only acute but also chronic rejection in cardiac transplantation.


Assuntos
Aloenxertos , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Janus Quinases/antagonistas & inibidores , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Aloenxertos/patologia , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Rejeição de Enxerto/sangue , Rejeição de Enxerto/patologia , Humanos , Reticulócitos/efeitos dos fármacos , Reticulócitos/patologia , Tacrolimo/farmacologia , Fatores de Tempo
5.
Eur J Pharmacol ; 560(2-3): 225-33, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17307161

RESUMO

T cells play a regulatory role in the pathogenesis of various immune and allergic diseases, including human asthma. Recently, it was reported that a pyrazole derivative, YM-58483 (BTP2), potently inhibits Ca(2+) release-activated Ca(2+) (CRAC) channels and interleukin (IL)-2 production in T cells. We investigated the effects of YM-58483 on T helper type 2 (Th2) cytokine production in vitro and antigen-induced airway asthmatic responses in vivo. YM-58483 inhibited IL-4 and IL-5 production in a conalbumine-stimulated murine Th2 T cell clone (D10.G4.1), and IL-5 production in phytohemagglutinin-stimulated human whole blood cells with IC(50) values comparable to those reported for its CRAC channel inhibition (around 100 nM). YM-58483 inhibited antigen-induced eosinophil infiltration into airways, and decreased IL-4 and cysteinyl-leukotrienes content in inflammatory airways induced in actively sensitized Brown Norway rats. Furthermore, orally administered YM-58483 prevented antigen-induced late phase asthmatic bronchoconstriction and eosinophil infiltration in actively sensitized guinea pigs. These data suggest that the inhibition of Ca(2+) influx through CRAC channel leads to the prevention of antigen-induced airway inflammation, probably via the inhibition of Th2 cytokine production and inflammatory mediators release. YM-58483 may therefore be useful for treating airway inflammation in bronchial asthma.


Assuntos
Anilidas/farmacologia , Asma/tratamento farmacológico , Canais de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Eosinofilia/prevenção & controle , Interleucina-4/antagonistas & inibidores , Interleucina-5/antagonistas & inibidores , Tiadiazóis/farmacologia , Animais , Antígenos/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Cobaias , Humanos , Interleucina-4/biossíntese , Interleucina-5/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos BN
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA