Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364281

RESUMO

Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.


Assuntos
Curcumina , Nanofibras , Polietilenos , Compostos de Amônio Quaternário , Zeína , Nanofibras/química , Zeína/química , Bandagens/microbiologia , Antibacterianos/química
2.
Biomater Adv ; 135: 212733, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929198

RESUMO

A nanocomposite bone scaffold was fabricated from pullulan, a natural extracellular polysaccharide. Pullulan (PULL) was blended with polyvinylpyrrolidone (PVP), and a nano-platform with ball-stick morphology, Ag-Silica Janus particles (Ag-Silica JPs), which were utilized to fabricate nanocomposite scaffold with enhanced mechanical and biological properties. The Ag-Silica JPs were synthesized via a one-step sol-gel method and used to obtain synergistic properties of silver and silica's antibacterial and bioactive effects, respectively. The synthesized Ag-Silica JPs were characterized by means of FE-SEM, DLS, and EDS. The PULL/PVP scaffolds containing Ag-Silica JPs, fabricated by the freeze-drying method, were evaluated by SEM, EDS, FTIR, XRD, ICP and biological analysis, including antibacterial activity, bioactivity, cell viability and cell culture tests. It was noted that increasing Ag-Silica JPs amounts to an optimum level (1% w/w) led to an improvement in compressive modulus and strength of nanocomposite scaffold, reaching 1.03 ± 0.48 MPa and 3.27 ± 0.18, respectively. Scaffolds incorporating Ag-Silica JPs also showed favorable antibacterial activity. The investigations through apatite forming ability of scaffolds in SBF indicated spherical apatite precipitates. Furthermore, the cell viability test proved the outstanding biocompatibility of nanocomposite scaffolds (more than 90%) confirmed by cell culture tests showing that increment of Ag-Silica JPs amounts led to better adhesion, proliferation, ALP activity and mineralization of MG-63 cells.


Assuntos
Nanopartículas Multifuncionais , Nanocompostos , Antibacterianos/farmacologia , Apatitas , Glucanos , Dióxido de Silício , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA