Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Dosim ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556401

RESUMO

Accurate information on set-up error during radiotherapy is essential for determining the optimal number of treatments in hypofractionated radiotherapy for prostate cancer. This necessitates careful control by the radiotherapy staff to assess the patient's condition. This study aimed to develop an evaluation method of the temporal trends in a patient's specific prostate movement during treatment using image matching and margin values. This study included 65 patients who underwent prostate volumetric modulated arc therapy (mean treatment time, 87.2 s). Set-up errors were assessed using bone, inter-, and intra-fraction marker matching across 39 fractions. The set-up margin was determined by dividing the four periods into 39 fractions using Stroom's formula and correlation coefficient. The intra-fraction set-up error was biased in the anterior-superior (AS) direction during treatment. The temporal trend of set-up errors during radiotherapy slightly increased based on bone matching and inter-fraction marker matching, with a 1.6-mm difference in the set-up margin fractions 11 to 20. The correlation coefficient of the mean prostate movement during treatment significantly decreased in the superior-inferior direction, while remaining high in the left-right and anterior-posterior directions. Image matching contributed significantly to the improvement of set-up errors; however, careful attention is needed for prostate movement in the AS direction, particularly during short treatment times. Understanding the trend of set-up errors during the treatment period is essential in numerical information sharing on patient condition and evaluating the margins for tailored hypo-fractionated radiotherapy, considering the facility's image-guided radiation therapy technology.

3.
J Med Imaging (Bellingham) ; 9(3): 034503, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35756973

RESUMO

Purpose: The purpose of our study was to analyze dental panoramic radiographs and contribute to dentists' diagnosis by automatically extracting the information necessary for reading them. As the initial step, we detected teeth and classified their tooth types in this study. Approach: We propose single-shot multibox detector (SSD) networks with a side branch for 1-class detection without distinguishing the tooth type and for 16-class detection (i.e., the central incisor, lateral incisor, canine, first premolar, second premolar, first molar, second molar, and third molar, distinguished by the upper and lower jaws). In addition, post-processing was conducted to integrate the results of the two networks and categorize them into 32 classes, differentiating between the left and right teeth. The proposed method was applied to 950 dental panoramic radiographs obtained at multiple facilities, including a university hospital and dental clinics. Results: The recognition performance of the SSD with a side branch was better than that of the original SSD. In addition, the detection rate was improved by the integration process. As a result, the detection rate was 99.03%, the number of false detections was 0.29 per image, and the classification rate was 96.79% for 32 tooth types. Conclusions: We propose a method for tooth recognition using object detection and post-processing. The results show the effectiveness of network branching on the recognition performance and the usefulness of post-processing for neural network output.

4.
Oral Radiol ; 37(1): 13-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893343

RESUMO

OBJECTIVES: Dental state plays an important role in forensic radiology in case of large scale disasters. However, dental information stored in dental clinics are not standardized or electronically filed in general. The purpose of this study is to develop a computerized system to detect and classify teeth in dental panoramic radiographs for automatic structured filing of the dental charts. It can also be used as a preprocessing step for computerized image analysis of dental diseases. METHODS: One hundred dental panoramic radiographs were employed for training and testing an object detection network using fourfold cross-validation method. The detected bounding boxes were then classified into four tooth types, including incisors, canines, premolars, and molars, and three tooth conditions, including nonmetal restored, partially restored, and completely restored, using classification network. Based on the visualization result, multisized image data were used for the double input layers of a convolutional neural network. The result was evaluated by the detection sensitivity, the number of false-positive detection, and classification accuracies. RESULTS: The tooth detection sensitivity was 96.4% with 0.5 false positives per case. The classification accuracies for tooth types and tooth conditions were 93.2% and 98.0%. Using the double input layer network, 6 point increase in classification accuracy was achieved for the tooth types. CONCLUSIONS: The proposed method can be useful in automatic filing of dental charts for forensic identification and preprocessing of dental disease prescreening purposes.


Assuntos
Arquivamento , Dente , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Radiografia Panorâmica , Dente/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...