Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(23): 5781-5791, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38829554

RESUMO

Precise characterization of the supercritical CO2-water interface under high pressure and temperature conditions is crucial for the geological storage of carbon dioxide (CO2) in deep saline aquifers. Molecular dynamics (MD) simulations offer a valuable approach to gaining insight into the CO2-water interface at a microscopic level. However, no attempt has been made to characterize the CO2-water interface with the accuracy afforded by ab initio calculations. In this study, we performed ab initio MD (AIMD) simulations to investigate the structural and dynamical properties of the CO2-water interface, comparing the results with those obtained from classical force-field MD (FF-MD) simulations. Molecular orientation at the interface was well reproduced in both AIMD and FF-MD simulations. Characteristic structural fluctuations of water at the interface were unveiled by applying multidimensional scaling and time-dependent principal component analysis to the AIMD trajectories; however, they were not prominent in the FF-MD simulations. Furthermore, our study demonstrated a marked difference in the residence time of molecules in the interface region between AIMD and FF-MD simulations, indicating that time-dependent properties of the CO2-water interface strongly depend on the description of the intermolecular forces.

2.
ACS Omega ; 9(19): 20976-20987, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764624

RESUMO

We performed molecular dynamics (MD) simulations of CO2 + H2O systems by employing widely used force fields (EPM2, TraPPE, and PPL models for CO2; SPC/E and TIP4P/2005 models for H2O). The phase behavior observed in our MD simulations is consistent with the coexistence lines obtained from previous experiments and SAFT-based theoretical models for the equations of state. Our structural analysis reveals a pronounced correlation between phase transitions and the structural orderliness. Specifically, the coordination number of Ow (oxygen in H2O) around other Ow significantly correlates with phase changes. In contrast, coordination numbers pertaining to the CO2 molecules show less sensitivity to the thermodynamic state of the system. Furthermore, our data indicate that a predominant number of H2O molecules exist as monomers without forming hydrogen bonds, particularly in a CO2-rich mixture, signaling a breakdown in the hydrogen bond network's orderliness, as evidenced by a marked decrease in tetrahedrality. These insights are crucial for a deeper atomic-level understanding of phase behaviors, contributing to the well-grounded design of CO2 injection under high-pressure and high-temperature conditions, where an atomic-scale perspective of the phase behavior is still lacking.

3.
Sci Rep ; 11(1): 22180, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772967

RESUMO

The network topology in disordered materials is an important structural descriptor for understanding the nature of disorder that is usually hidden in pairwise correlations. Here, we compare the covalent network topology of liquid and solidified silicon (Si) with that of silica (SiO2) on the basis of the analyses of the ring size and cavity distributions and tetrahedral order. We discover that the ring size distributions in amorphous (a)-Si are narrower and the cavity volume ratio is smaller than those in a-SiO2, which is a signature of poor amorphous-forming ability in a-Si. Moreover, a significant difference is found between the liquid topology of Si and that of SiO2. These topological features, which are reflected in diffraction patterns, explain why silica is an amorphous former, whereas it is impossible to prepare bulk a-Si. We conclude that the tetrahedral corner-sharing network of AX2, in which A is a fourfold cation and X is a twofold anion, as indicated by the first sharp diffraction peak, is an important motif for the amorphous-forming ability that can rule out a-Si as an amorphous former. This concept is consistent with the fact that an elemental material cannot form a bulk amorphous phase using melt quenching technique.

4.
J Chem Phys ; 155(13): 134114, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624975

RESUMO

Systematic reduction of the dimensionality is highly demanded in making a comprehensive interpretation of experimental and simulation data. Principal component analysis (PCA) is a widely used technique for reducing the dimensionality of molecular dynamics (MD) trajectories, which assists our understanding of MD simulation data. Here, we propose an approach that incorporates time dependence in the PCA algorithm. In the standard PCA, the eigenvectors obtained by diagonalizing the covariance matrix are time independent. In contrast, they are functions of time in our new approach, and their time evolution is implemented in the framework of Car-Parrinello or Born-Oppenheimer type adiabatic dynamics. Thanks to the time dependence, each of the step-by-step structural changes or intermittent collective fluctuations is clearly identified, which are often keys to provoking a drastic structural transformation but are easily masked in the standard PCA. The time dependence also allows for reoptimization of the principal components (PCs) according to the structural development, which can be exploited for enhanced sampling in MD simulations. The present approach is applied to phase transitions of a water model and conformational changes of a coarse-grained protein model. In the former, collective dynamics associated with the dihedral-motion in the tetrahedral network structure is found to play a key role in crystallization. In the latter, various conformations of the protein model were successfully sampled by enhancing structural fluctuation along the periodically optimized PC. Both applications clearly demonstrate the virtue of the new approach, which we refer to as time-dependent PCA.

5.
Phys Chem Chem Phys ; 21(32): 17521-17537, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31198924

RESUMO

Silicene is a two-dimensional nanomaterial, composed of Si atoms arranged into a buckled honeycomb network. It has become of great interest in recent years due to its remarkable properties such as its natural compatibility with current silicon-based technology. Due to its extreme thinness on the nanoscale, and large lateral dimensions, it has potential applications in gas sensing, gas storage and components in modern electronic devices. In this work, density functional theory calculations and ab initio molecular dynamics simulations are used to examine the reaction of SO2, NO2 and H2S on the Si/Ag(111) surface. It was shown that each gas will adsorb on the surface in different orientations and adsorption sites. SO2 and NO2 were found to chemisorb on the surface, whereas H2S was found to physisorb. SO2 and H2S adsorb associatively, whereas NO2 readily dissociates, producing adsorbed oxygen, and gaseous NO. At elevated temperatures, the SO2 and NO2 remain strongly bound to the surface, resulting in poisoning of the silicene, while H2S readily desorbs. Ab initio molecular dynamics also show that NO2 will selectively bind before SO2 when both gases are present in the same environment. This work shows that Si/Ag(111) may provide useful properties for gas sensing and storage applications.

6.
Phys Chem Chem Phys ; 21(13): 7165-7173, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30887979

RESUMO

Silicene, the silicon analog of graphene, is an atomically thin two-dimensional material with promising applications in gas sensing, storage and as components in modern electronic devices. Silicene epitaxially grown on the Ag(111) surface can expand the utility of the silver surface by enabling the tuning of its work function through the functionalisation of silicene. Here we examine the electronic and structural properties and the thermodynamic stability of functionalised silicene/4 × 4 Ag(111) using density functional theory calculations coupled with ab initio molecular dynamics (AIMD) simulations. We focus on 11 functional groups, namely phenyl, methyl, hydroxyl, cyano, methoxyl, amino and ethylmethylamine, in addition to 4 halogen atoms. These functional groups are shown to endow the Si/Ag(111) surface with a large variation in the work function. Our AIMD simulations confirm the thermodynamic stability of these 11 functionalised structures. This work shows the possibility of tuning the electronic structure of silicene by functionalisation, which could then be utilized in polymer solar cells and nanoelectronic circuit components.

7.
Sci Technol Adv Mater ; 19(1): 76-100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410713

RESUMO

Mono-elemental two-dimensional (2D) crystals (graphene, silicene, germanene, stanene, and so on), termed 2D-Xenes, have been brought to the forefront of scientific research. The stability and electronic properties of 2D-Xenes are main challenges in developing practical devices. Therefore, in this review, we focus on 2D free-standing group-IV graphene analogs (graphene quantum dots, silicane, and germanane) and the functionalization of these sheets with organic moieties, which could be handled under ambient conditions. We highlight the present results and future opportunities, functions and applications, and novel device concepts.

8.
Phys Chem Chem Phys ; 19(28): 18262-18272, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28696458

RESUMO

The interactions of glymes with alkali or alkaline earth metal cations depend strongly on the metal cations. For example, the stabilization energies (Eform) calculated for the formation of cation-triglyme (G3) complexes with Li+, Na+, K+, Mg2+, and Ca2+ at the MP2/6-311G** level were -95.6, -66.4, -52.5, -255.0, and -185.0 kcal mol-1, respectively, and those for the cation-tetraglyme (G4) complexes were -107.7, -76.3, -60.9, -288.3 and -215.0 kcal mol-1, respectively. The electrostatic and induction interactions are the major source of the attraction in the complexes; the contribution of the induction interactions to the attraction is especially significant in the divalent cation-glyme complexes. The binding energies of the cation-G3 complexes with Li+, Na+, K+, Mg2+, and Ca2+ and the bis(trifluoromethylsulfonyl)amide anion ([TFSA]-) were -83.9, -86.6, -80.0, -196.1, and -189.5 kcal mol-1, respectively, and they are larger than the binding energies of the corresponding cation-G4 complexes (-73.6, -75.0, -77.4, -172.1, and -177.2 kcal mol-1, respectively). The binding energies and conformational flexibility of the cation-glyme complexes also affect the melting points of equimolar mixtures of glyme and TFSA salts. Furthermore, the interactions of the metal cations with the oxygen atoms of glymes significantly decrease the HOMO energy levels of glymes. The HOMO energy levels of glymes in the cation-glyme-TFSA complexes are lower than those of isolated glymes, although they are higher than those of the cation-glyme complexes.

9.
J Chem Theory Comput ; 13(7): 3106-3119, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28602083

RESUMO

Efficient and reliable estimation of the mean force (MF), the derivatives of the free energy with respect to a set of collective variables (CVs), has been a challenging problem because free energy differences are often computed by integrating the MF. Among various methods for computing free energy differences, logarithmic mean-force dynamics (LogMFD) [ Morishita et al., Phys. Rev. E 2012 , 85 , 066702 ] invokes the conservation law in classical mechanics to integrate the MF, which allows us to estimate the free energy profile along the CVs on-the-fly. Here, we present a method called parallel dynamics, which improves the estimation of the MF by employing multiple replicas of the system and is straightforwardly incorporated in LogMFD or a related method. In the parallel dynamics, the MF is evaluated by a nonequilibrium path-ensemble using the multiple replicas based on the Crooks-Jarzynski nonequilibrium work relation. Thanks to the Crooks relation, realizing full-equilibrium states is no longer mandatory for estimating the MF. Additionally, sampling in the hidden subspace orthogonal to the CV space is highly improved with appropriate weights for each metastable state (if any), which is hardly achievable by typical free energy computational methods. We illustrate how to implement parallel dynamics by combining it with LogMFD, which we call logarithmic parallel dynamics (LogPD). Biosystems of alanine dipeptide and adenylate kinase in explicit water are employed as benchmark systems to which LogPD is applied to demonstrate the effect of multiple replicas on the accuracy and efficiency in estimating the free energy profiles using parallel dynamics.


Assuntos
Simulação de Dinâmica Molecular , Adenilato Quinase/química , Alanina/química , Algoritmos , Dipeptídeos/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Termodinâmica
10.
J Chem Phys ; 144(11): 114704, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004890

RESUMO

Silicene is a relatively new material consisting of a two-dimensional sheet of silicon atoms. Functionalisation of silicene with different chemical groups has been suggested as a way to tune its electronic properties. In this work, density functional theory calculations and ab initio molecular dynamics simulations are used to examine the effects of functionalisation with naphthyl or anthracyl groups, which are two examples of small polycyclic aromatic hydrocarbons (PAHs). Different attachment positions on the naphthyl and anthracyl groups were compared, as well as different thicknesses of the silicene nanosheet. It was found that the carbon attachment position farthest from the bond fusing the aromatic rings gave the more stable structures for both functional groups. All structures showed direct band gaps, with tuning of the band gap being achievable by increasing the length of the PAH or the thickness of the silicene. Hence, modifying the functional group or thickness of the silicene can both be used to alter the electronic properties of silicene making it a highly promising material for use in future electronic devices and sensors.

11.
Nat Commun ; 7: 10657, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847858

RESUMO

Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great potential as a key material in the next generation of electronics; however, its use in more demanding applications is prevented because of its instability under ambient conditions. Here we report three types of bilayer silicenes that form after treating calcium-intercalated monolayer silicene (CaSi2) with a BF4(-) -based ionic liquid. The bilayer silicenes that are obtained are sandwiched between planar crystals of CaF2 and/or CaSi2, with one of the bilayer silicenes being a new allotrope of silicon, containing four-, five- and six-membered sp(3) silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in contrast to monolayer silicene which is a zero-gap semiconductor.

12.
Sci Rep ; 5: 17570, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631577

RESUMO

We demonstrate, using first-principles molecular-dynamics simulations, that oxidation of silicene can easily take place either at low or high oxygen doses, which importantly helps clarify previous inconsistent reports on the oxidation of silicene on the Ag(111) substrate. We show that, while the energy barrier for an O2 molecule reacting with a Si atom strongly depends on the position and orientation of the molecule, the O2 molecule immediately dissociates and forms an Si-O-Si configuration once it finds a barrier-less chemisorption pathway around an outer Si atom of the silicene overlayer. A synergistic effect between the molecular dissociation and subsequent structural rearrangements is found to accelerate the oxidation process at a high oxygen dose. This effect also enhances self-organized formation of sp(3)-like tetrahedral configurations (consisting of Si and O atoms), which results in collapse of the two-dimensional silicene structure and its exfoliation from the substrate. We also find that the electronic properties of the silicene can be significantly altered by oxidation. The present findings suggest that low flux and low temperature of the oxygen gas are key to controlling oxidation of silicene.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26389113

RESUMO

Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein, and protein-DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration.

14.
Sci Rep ; 4: 7543, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519839

RESUMO

Epitaxial silicene, which is one single layer of silicon atoms packed in a honeycomb structure, demonstrates a strong interaction with the substrate that dramatically affects its electronic structure. The role of electronic coupling in the chemical reactivity between the silicene and the substrate is still unclear so far, which is of great importance for functionalization of silicene layers. Here, we report the reconstructions and hybridized electronic structures of epitaxial 4 × 4 silicene on Ag(111), which are revealed by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. The hybridization between Si and Ag results in a metallic surface state, which can gradually decay due to oxygen adsorption. X-ray photoemission spectroscopy confirms the decoupling of Si-Ag bonds after oxygen treatment as well as the relatively oxygen resistance of Ag(111) surface, in contrast to 4 × 4 silicene [with respect to Ag(111)]. First-principles calculations have confirmed the evolution of the electronic structure of silicene during oxidation. It has been verified experimentally and theoretically that the high chemical activity of 4 × 4 silicene is attributable to the Si pz state, while the Ag(111) substrate exhibits relatively inert chemical behavior.

15.
Chem Commun (Camb) ; 50(68): 9761-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25026112

RESUMO

Lithiated polysilane was synthesized by the mechanochemical reaction of layered polysilane with metallic lithium. The resulting dark green powder formed a Si-Li bond on the surface and demonstrated electroconductivity.

16.
J Chem Phys ; 140(18): 184110, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832256

RESUMO

We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

17.
J Chem Phys ; 139(6): 064103, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23947839

RESUMO

Decomposition-order dependence of time development integrator on ensemble averages for the Nosé-Hoover dynamics is discussed. Six integrators were employed for comparison, which were extensions of the velocity-Verlet or position-Verlet algorithm. Molecular dynamics simulations by these integrators were performed for liquid-argon systems with several different time steps and system sizes. The obtained ensemble averages of temperature and potential energy were shifted from correct values depending on the integrators. These shifts increased in proportion to the square of the time step. Furthermore, the shifts could not be removed by increasing the number of argon atoms. We show the origin of these ensemble-average shifts analytically. Our discussion can be applied not only to the liquid-argon system but also to all MD simulations with the Nosé-Hoover thermostat. Our recommended integrators among the six integrators are presented to obtain correct ensemble averages.

18.
J Comput Chem ; 34(16): 1375-84, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23460528

RESUMO

Mean-force dynamics (MFD), which is a fictitious dynamics for a set of collective variables on a potential of mean-force, is a powerful algorithm to efficiently explore free-energy landscapes. Recently, we have introduced logarithmic MFD (LogMFD) (Morishita et al., Phys. Rev. E 2012, 85, 066702) which overcomes difficulties encounterd in free-energy calculations using standard approaches such as thermodynamic integration. Here, we present a guide to implementing LogMFD calculations paying attention to the practical issues in choosing the parameters in LogMFD. A primary focus is given to the effect of the parameters on the accuracy of the reconstructed free-energy profiles. A recipe for reducing the errors due to energy dissipation is presented. We also demonstrate that multidimensional free-energy landscapes can be reconstructed on-the-fly using LogMFD, which cannot be accomplished using any other free-energy calculation techniques.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Termodinâmica
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056707, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214906

RESUMO

Thermostats for homogeneous nonequilibrium molecular dynamics simulations are usually designed to control the kinetic temperature, but it is now possible control any combination of many different types of temperature, including the configurational and kinetic temperatures and their directional components. It is well known that these temperatures can become unequal in homogeneously thermostatted shearing steady states. The microscopic expressions for these temperatures are all derived from equilibrium distribution functions, and it is pertinent to ask, what are the consequences of using these equilibrium microscopic expressions for temperature in thermostats for shearing nonequilibrium steady states? Here we show that the answer to this question depends on which properties are being investigated. We present numerical results showing that the value of the zero shear rate viscosity obtained by extrapolating results of nonequilibrium molecular dynamics simulations of shearing steady states is the same, regardless of the type of temperature that is controlled. It also agrees with the value obtained from the equilibrium stress autocorrelation function via the Green-Kubo relation. However, the values of the limiting zero shear rate first normal stress coefficient obtained from nonequilibrium molecular dynamics simulations of shearing steady states are strongly dependent on the choice of temperature being controlled. They also differ from the value of the first normal stress coefficient that is calculated from the equilibrium stress autocorrelation function. We show that even when all of the directional components of the kinetic and configurational temperatures are simultaneously controlled to the same value, the agreement with the result obtained from the equilibrium stress autocorrelation function is poor.


Assuntos
Algoritmos , Artefatos , Simulação de Dinâmica Molecular , Estresse Mecânico , Temperatura , Simulação por Computador , Cinética
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066702, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23005238

RESUMO

A method for free-energy calculation based on mean-force dynamics (fictitious dynamics on a potential of mean force) is presented. The method utilizes a logarithmic form of free energy to enhance crossing barriers on a free-energy landscape, which results in efficient sampling of "rare" events. Invoking a conserved quantity in mean-force dynamics, free energy can be estimated on-the-fly without postprocessing. This means that an estimate of the free-energy profile can be locally made in contrast to the other methods based on mean-force dynamics such as metadynamics. The method is benchmarked against conventional methods and its high efficiency is demonstrated in the free-energy calculation for a glycine dipeptide molecule.


Assuntos
Algoritmos , Transferência de Energia , Entropia , Modelos Teóricos , Simulação por Computador , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...