Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 17969, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863977

RESUMO

Skin aging is a multifactorial process influenced by internal and external factors. The contribution of different environmental factors has been well established individually in the last few years. On the one hand, man is rarely exposed to a single factor, and on the other hand, there is very little knowledge about how these extrinsic factors may interact with each other or even how the skin may react to chronic exposure. This study aimed to evaluate the effect on skin aging of a chronic co-exposure of tissue-engineered skin substitutes to cigarette smoke extract (CSE) and solar simulator light (SSL). Skin substitutes were reconstructed according to the self-assembly method and then exposed to CSE followed by irradiation with SSL simultaneously transmitting UVA1, visible light and infrared. When skin substitutes were chronically exposed to CSE and SSL, a significant decrease in procollagen I synthesis and the inhibition of Smad2 phosphorylation of the TGF-ß signaling pathway were observed. A 6.7-fold increase in MMP-1 activity was also observed when CSE was combined with SSL, resulting in a decrease in collagen III and collagen IV protein expression. The secretory profile resulting from the toxic synergy was investigated and several alterations were observed, notably an increase in the quantities of pro-inflammatory cytokines. The results also revealed the activation of the ERK1/2 (3.4-fold) and JNK (3.3-fold) pathways. Taken together, the results showed that a synergy between the two environmental factors could provoke premature skin aging.


Assuntos
Fumar Cigarros , Envelhecimento da Pele , Humanos , Masculino , Pele/metabolismo , Luz Solar/efeitos adversos , Colágeno/metabolismo
3.
J Neuromuscul Dis ; 10(6): 1041-1053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694373

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. In DM1 patients, skeletal muscle is severely impaired, even atrophied and patients experience a progressive decrease in maximum strength. Strength training for these individuals can improve their muscle function and mass, however, the biological processes involved in these improvements remain unknown. OBJECTIVE: This exploratory study aims at identifying the proteomic biomarkers and variables associated with the muscle proteome changes induced by training in DM1 individuals. METHODS: An ion library was developed from liquid chromatography-tandem mass spectrometry proteomic analyses of Vastus Lateralis muscle biopsies collected in 11 individuals with DM1 pre-and post-training. RESULTS: The proteomic analysis showed that the levels of 44 proteins were significantly modulated. A literature review (PubMed, UniProt, PANTHER, REACTOME) classified these proteins into biological sub-classes linked to training-induced response, including immunity, energy metabolism, apoptosis, insulin signaling, myogenesis and muscle contraction. Linear models identified key variables explaining the proteome modulation, including atrophy and hypertrophy factors. Finally, six proteins of interest involved in myogenesis, muscle contraction and insulin signaling were identified: calpain-3 (CAN3; Muscle development, positive regulation of satellite cell activation), 14-3-3 protein epsilon (1433E; Insulin/Insulin-like growth factor, PI3K/Akt signaling), myosin-binding protein H (MYBPH; Regulation of striated muscle contraction), four and a half LIM domains protein 3 (FHL3; Muscle organ development), filamin-C (FLNC; Muscle fiber development) and Cysteine and glycine-rich protein 3 (CSRP3). CONCLUSION: These findings may lead to the identification for DM1 individuals of novel muscle biomarkers for clinical improvement induced by rehabilitation, which could eventually be used in combination with a targeted pharmaceutical approach to improving muscle function, but further studies are needed to confirm those results.


Assuntos
Insulinas , Doenças Musculares , Distrofia Miotônica , Adulto , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Proteômica , Músculo Esquelético/patologia , Biomarcadores/metabolismo , Insulinas/metabolismo
4.
Photochem Photobiol ; 99(5): 1258-1268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36537030

RESUMO

Solar radiation and cigarette smoke are two environmental risk factors known to affect skin integrity. Although the toxic effects of these factors on skin have been widely studied separately, few studies have focused on their interaction. The objective of this study was to evaluate and understand the synergistic harmful effects of cigarette smoke and solar rays on human primary keratinocytes. The keratinocytes were exposed to cigarette smoke extract (CSE) and then irradiated with a solar simulator light (SSL). The viability, as determined by measuring metabolic activity of skin cells, and the levels of global reactive oxygen species (ROS) were evaluated after exposure to CSE and SSL. The combination of 3% CSE with 29 kJ m-2 UVA caused a decrease of 81% in cell viability, while with 10% to 20% CSE, the cell viability was null. This phototoxicity was accompanied by an increase in singlet oxygen but a decrease in type I ROS when CSE and SSL were combined in vitro. Surprisingly, an increase in the CSE's total antioxidant capacity was also observed. These results suggest a synergy between the two environmental factors in their effect on skin cells, and more precisely a phototoxicity causing a drastic decrease in cell viability.

5.
Respir Res ; 23(1): 275, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209215

RESUMO

BACKGROUND: Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP. METHODS: Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. RESULTS: Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP­associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. CONCLUSIONS: Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge.


Assuntos
Alveolite Alérgica Extrínseca , Linfócitos T , Animais , Antígenos , Linfócitos B , Líquido da Lavagem Broncoalveolar , Proteínas de Homeodomínio , Inflamação/patologia , Pulmão/patologia , Camundongos
6.
Front Physiol ; 13: 949378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105289

RESUMO

Hypoxia is common in lung diseases and a potent stimulator of the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1). Herein, we investigated the impact of Malat1 on hypoxia-induced lung dysfunction in mice. Malat1-deficient mice and their wild-type littermates were tested after 8 days of normoxia or hypoxia (10% oxygen). Hypoxia decreased elastance of the lung by increasing lung volume and caused in vivo hyperresponsiveness to methacholine without altering the contraction of airway smooth muscle. Malat1 deficiency also modestly decreased lung elastance but only when tested at low lung volumes and without altering lung volume and airway smooth muscle contraction. The in vivo responsiveness to methacholine was also attenuated by Malat1 deficiency, at least when elastance, a readout sensitive to small airway closure, was used to assess the response. More impressively, in vivo hyperresponsiveness to methacholine caused by hypoxia was virtually absent in Malat1-deficient mice, especially when hysteresivity, a readout sensitive to small airway narrowing heterogeneity, was used to assess the response. Malat1 deficiency also increased the coefficient of oxygen extraction and decreased ventilation in conscious mice, suggesting improvements in gas exchange and in clinical signs of respiratory distress during natural breathing. Combined with a lower elastance at low lung volumes at baseline, as well as a decreased propensity for small airway closure and narrowing heterogeneity during a methacholine challenge, these findings represent compelling evidence suggesting that the lack of Malat1 protects the access to alveoli for air entering the lung.

7.
Front Pharmacol ; 13: 971238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160400

RESUMO

Rationale: Smoking status and smoking history remain poorly accounted for as variables that could affect the efficacy of new drugs being tested in chronic obstructive pulmonary disease (COPD) patients. As a proof of concept, we used a pre-clinical model of cigarette smoke (CS) exposure to compare the impact of treatment during active CS exposure or during the cessation period on the anti-inflammatory effects IL-1α signaling blockade. Methods: Mice were exposed to CS for 2 weeks, followed by a 1-week cessation, then acutely re-exposed for 2 days. Mice were treated with an anti-IL-1α antibody either during CS exposure or during cessation and inflammatory outcomes were assessed. Results: We found that mice re-exposed to CS displayed reduced neutrophil counts and cytokine levels in the bronchoalveolar lavage (BAL) compared to mice exposed only acutely. Moreover, we found that treatment with an anti-IL-1α antibody during the initial CS exposure delayed inflammatory processes and interfered with pulmonary adaptation, leading to rebound pulmonary neutrophilia, increased BAL cytokine secretion (CCL2) and upregulated Mmp12 expression. Conversely, administration of anti-IL-1α during cessation had the opposite effect, improving BAL neutrophilia, decreasing CCL2 levels and reducing Mmp12 expression. Discussion: These results suggest that pulmonary adaptation to CS exposure dampens inflammation and blocking IL-1α signaling during CS exposure delays the inflammatory response. More importantly, the same treatment administered during cessation hastens the return to pulmonary inflammatory homeostasis, strongly suggesting that smoking status and treatment timing should be considered when testing new biologics in COPD.

8.
Front Physiol ; 13: 873465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082219

RESUMO

Introduction: Quadriceps dysfunction is a common systemic manifestation of chronic obstructive pulmonary disease (COPD), for which treatment using resistance training is highly recommended. Even though training volume is suggested to be a key explanatory factor for intramuscular adaptation to resistance training in healthy older adults, knowledge is scarce on the role of progression of training volume for intramuscular adaptations in COPD. Methods: This study was a sub-analysis of a parallel-group randomized controlled trial. Thirteen patients with severe to very severe COPD (median 66 yrs, forced expiratory volume in 1 s 44% predicted) performed 8 weeks of low-load resistance training. In a post hoc analysis, they were divided into two groups according to their training volume progression. Those in whom training volume continued to increase after the first 4 weeks of training outlined the continued progression group (n = 9), while those with limited increase (<5%) or even reduction in training volume after the initial 4 weeks composed the discontinued progression group (n = 4). Fiber-type distribution and oxidative muscle protein levels, i.e., citrate synthase (CS), hydroxyacyl-coenzyme A dehydrogenase (HADH), mitochondrial transcription factor A (TfAM) as well as quadriceps endurance measures (total work from elastic band and isokinetic knee extension tests), were assessed before and after the intervention period. Results: The continued progression group sustained their training volume progression during weeks 5-8 compared to weeks 1-4 (median +25%), while the discontinued progression group did not (median -2%) (p = 0.007 between groups). Compared with baseline values, significant between-group differences in fiber type distribution and TfAM muscle protein levels (range ± 17-62%, p < 0.05) and in individual responses to change in Type I and Type IIa fiber type proportion, CS, HADH, and TfAM muscle protein levels outcomes (median 89 vs. 50%, p = 0.001) were seen in favor of the continued progression group. Moreover, only the continued progression group had a significant increase in HADH muscle protein levels (+24%, p = 0.004), elastic band (+56%, p = 0.004) and isokinetic (+7%, p = 0.004) quadriceps endurance, but the between-group differences did not reach statistical significance (range 14-29%, p = 0.330-1.000). Discussion: The novel findings of the current study were that patients with COPD who had a continued progression of training volume across the 8-weeks intervention had an increased proportion of Type I fibers, and TfAM muscle protein levels and decreased proportion of Type II fibers compared to those that did not continue to progress their training volume after the initial weeks. Additionally, HADH muscle protein levels and quadriceps endurance measurements only improved in the continued progression group, although no significant between-group differences were seen. These findings highlight the importance of continued progression of training volume during resistive training to counteract quadriceps dysfunction within the COPD population. Still, considering the small sample size and the post hoc nature of our analyses, these results should be interpreted cautiously, and further research is necessary.

10.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L37-L47, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638643

RESUMO

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human ß-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation. Mice were exposed to cigarette smoke acutely (4 days) or chronically (5 days/wk for 7 wk) and administered hBD-2 intranasally or by gavage. In a separate model of acute exacerbation, chronically exposed mice treated with hBD-2 were infected with nontypeable Haemophilus influenzae before euthanasia. In the acute exposure model, cigarette smoke-associated pulmonary neutrophilia was significantly blunted by both local and systemic hBD-2 administration. Similarly, chronically exposed mice administered hBD-2 therapeutically exhibited reduced pulmonary neutrophil infiltration and downregulated proinflammatory signaling in the lungs compared with vehicle-treated mice. Finally, in a model of acute bacterial exacerbation, hBD-2 administration effectively limited neutrophil infiltration in the lungs while markedly reducing pulmonary bacterial load. This study shows that hBD-2 treatment can significantly attenuate lung neutrophilia induced by cigarette smoke exposure while preserving immune competence and promoting an appropriate host-defense response to bacterial stimuli.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , beta-Defensinas , Animais , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumar , beta-Defensinas/farmacologia
11.
J Asthma Allergy ; 15: 691-701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615256

RESUMO

Purpose: Monoclonal antibodies targeting interleukin-5 (IL5) and its receptor (IL5R), used for severe asthma treatment, reduce eosinophils to almost complete depletion. Fractional exhaled nitric oxide (FeNO), a surrogate marker of eosinophilic airway inflammation, is expected to decrease after their initiation. Our center noticed increased FeNO levels in a few patients in whom anti-IL5/IL5R therapy was initiated. Limited data are available on the kinetics of T2 inflammation biomarkers after initiation of a biologic in that population. This study aims to identify if a subgroup of severe asthma patients experiences increased FeNO levels after initiation of anti-IL5/IL5R therapy and to describe their clinical characteristics. Patients and Methods: This is a retrospective case series of 5 patients on Benralizumab (4M:1F) and 8 on Mepolizumab (5M:3F) who showed a significant increase in FeNO (>20% AND >25 ppb) following initiation of an anti-IL5/IL5R treatment. Clinical data, expiratory flows, and inflammation were extracted from the patients' chart at initiation of treatment (T0), 3 months (T1) and 12 months (T2) post-treatment. Descriptive statistics were used. Results: In patients treated with Benralizumab, the increase in FeNO was observed between T0 and T1 (mean delta = 82 ± 72 ppb) with a subsequent decrease (N = 3). In most patients taking Mepolizumab (N = 6), the FeNO increase was observed between T1 and T2 (mean delta = 57 ± 35 ppb). Under treatment, no Benralizumab patient experienced asthma exacerbation while two on Mepolizumab did. All patients had a significant decrease in blood eosinophils. Conclusion: Although initiation of anti-IL5/IL5R may cause a transient rise in FeNO levels in a subgroup of patients, it does not appear to affect clinical outcomes. A compensatory mechanism involving other inflammatory pathways such as IL13 or IL4, both involved in FeNO production, could theoretically explain these findings. Further investigation is needed to elucidate the actual underlying mechanisms.

12.
Physiol Rep ; 10(2): e15146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075822

RESUMO

Vaping is increasingly popular among the young and adult population. Vaping liquids contained in electronic cigarettes (e-cigarettes) are mainly composed of propylene glycol and glycerol, to which nicotine and flavors are added. Among several biological processes, glycerol is a metabolic substrate used for lipid synthesis in fed state as well as glucose synthesis in fasting state. We aimed to investigate the effects of glycerol e-cigarette aerosol exposure on the aspects of glycerol and glucose homeostasis. Adult and young male and female mice were exposed to e-cigarette aerosols with glycerol as vaping liquid using an established whole-body exposure system. Mice were exposed acutely (single 2-h exposure) or chronically (2 h/day, 5 days/week for 9 weeks). Circulating glycerol and glucose levels were assessed and glycerol as well as glucose tolerance tests were performed. The liver was also investigated to assess changes in the histology, lipid content, inflammation, and stress markers. Lung functions were also assessed as well as hepatic mRNA expression of genes controlling the circadian rhythm. Acute exposure to glycerol aerosols generated by an e-cigarette increased circulating glycerol levels in female mice. Increased hepatic triglyceride and phosphatidylcholine concentrations were observed in female mice with no increase in circulating alanine aminotransferase or evidence of inflammation, fibrosis, or endoplasmic reticulum stress. Chronic exposure to glycerol e-cigarette aerosols mildly impacted glucose tolerance test in young female and male mice. Fasting glycerol, glucose, and insulin remained unchanged. Increased pulmonary resistance was observed in young male mice. Taken together, this study shows that the glycerol contained in vaping liquids can affect the liver as well as the aspects of glucose and glycerol homeostasis. Additional work is required to translate these observations to humans and determine the biological and potential pathological impacts of these findings.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Feminino , Glicerol/farmacologia , Homeostase , Fígado , Masculino , Camundongos , Vaping/efeitos adversos
13.
Eur Respir Rev ; 30(162)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34911693

RESUMO

Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.


Assuntos
Pneumopatias , Surfactantes Pulmonares , Exposição Ambiental , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão
14.
J Immunol ; 206(8): 1923-1931, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722877

RESUMO

Cigarette smoke exposure induces inflammation marked by rapid and sustained neutrophil infiltration, IL-1α, release and altered surfactant homeostasis. However, the extent to which neutrophils and IL-1α contribute to the maintenance of pulmonary surfactant homeostasis is not well understood. We sought to investigate whether neutrophils play a role in surfactant clearance as well as the effect of neutrophil depletion and IL-1α blockade on the response to cigarette smoke exposure. In vitro and in vivo administration of fluorescently labeled surfactant phosphatidylcholine was used to assess internalization of surfactant by lung neutrophils and macrophages during or following cigarette smoke exposure in mice. We also depleted neutrophils using anti-Ly-6G or anti-Gr-1 Abs, or we neutralized IL-1α using a blocking Ab to determine their respective roles in regulating surfactant homeostasis during cigarette smoke exposure. We observed that neutrophils actively internalize labeled surfactant both in vitro and in vivo and that IL-1α is required for smoke-induced elevation of surfactant protein (SP)-A and SP-D levels. Neutrophil depletion during cigarette smoke exposure led to a further increase in SP-A levels in the bronchoalveolar lavage and increased IL-1α, CCL2, GM-CSF, and G-CSF release. Finally, macrophage expression of Mmp12, a protease linked to emphysema, was increased in neutrophil-depleted groups and decreased following IL-1α blockade. Taken together, our results indicate that neutrophils and IL-1α signaling are actively involved in surfactant homeostasis and that the absence of neutrophils in the lungs during cigarette smoke exposure leads to an IL-1α-dependent exacerbation of the inflammatory response.


Assuntos
Fumar Cigarros/efeitos adversos , Inflamação/imunologia , Interleucina-1alfa/metabolismo , Neutrófilos/imunologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Regulação para Cima
15.
Chest ; 159(5): 1821-1832, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316237

RESUMO

BACKGROUND: Training volume is paramount in the magnitude of physiological adaptations following resistance training. However, patients with severe COPD are limited by dyspnea during traditional two-limb low-load/high-repetition resistance training (LLHR-RT), resulting in suboptimal training volumes. During a single exercise session, single-limb LLHR-RT decreases the ventilatory load and enables higher localized training volumes compared with two-limb LLHR-RT. RESEARCH QUESTION: Does single-limb LLHR-RT lead to more profound effects compared with two-limb LLHR-RT on exercise capacity (6-min walk distance [6MWD]), health status, muscle function, and limb adaptations in patients with severe COPD? STUDY DESIGN AND METHODS: Thirty-three patients (mean age 66 ± 7 years; FEV1 39 ± 10% predicted) were randomized to 8 weeks of single- or two-limb LLHR-RT. Exercise capacity (6MWD), health status, and muscle function were compared between groups. Quadriceps muscle biopsy specimens were collected to examine physiological responses. RESULTS: Single-limb LLHR-RT did not further enhance 6MWD compared with two-limb LLHR-RT (difference, 14 [-12 to 39 m]. However, 73% in the single-limb group exceeded the known minimal clinically important difference of 30 m compared with 25% in the two-limb group (P = .02). Health status and muscle function improved to a similar extent in both groups. During training, single-limb LLHR-RT resulted in a clinically relevant reduction in dyspnea during training compared with two-limb LLHR-RT (-1.75; P = .01), but training volume was not significantly increased (23%; P = .179). Quadriceps muscle citrate synthase activity (19%; P = .03), hydroxyacyl-coenzyme A dehydrogenase protein levels (32%; P < .01), and capillary-to-fiber ratio (41%; P < .01) were increased compared with baseline after pooling muscle biopsy data from all participants. INTERPRETATION: Single-limb LLHR-RT did not further increase mean 6MWD compared with two-limb LLHR-RT, but it reduced exertional dyspnea and enabled more people to reach clinically relevant improvements in 6MWD. Independent of execution strategy, LLHR-RT improved exercise capacity, health status, muscle endurance, and enabled several physiological muscle adaptations, reducing the negative consequences of limb muscle dysfunction in COPD. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT02283580; URL: www.clinicaltrials.gov.


Assuntos
Adaptação Fisiológica , Tolerância ao Exercício , Extremidades/fisiologia , Nível de Saúde , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Treinamento Resistido/métodos , Idoso , Biópsia por Agulha , Feminino , Humanos , Análise de Intenção de Tratamento , Masculino , Músculo Esquelético/fisiologia , Estudos Prospectivos , Qualidade de Vida
16.
Eur Respir Rev ; 29(157)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33060167

RESUMO

Vaping has become increasingly popular over the past decade. This pragmatic review presents the published biological effects of electronic cigarette vapour inhalation with a focus on the pulmonary effects. Special attention has been devoted to providing the documented effects specific to each major ingredient, namely propylene glycol/glycerol, nicotine and flavouring agents. For each ingredient, findings are divided according to the methodology used, being in vitro studies, animal studies and clinical studies. Finally, we provide thoughts and insights on the current state of understanding of the pulmonary effects of vaping, as well as novel research avenues and methodologies.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Administração por Inalação , Animais , Humanos , Nicotina , Propilenoglicol/efeitos adversos , Vaping/efeitos adversos
17.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L717-L727, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845704

RESUMO

Most of electronic cigarette (e-cigarette) users are also smoking tobacco cigarettes. Because of the relative novelty of this habit, very little is known on the impact of vaping on pulmonary health, even less on the potential interactions of dual e-cigarette and tobacco cigarette use. Therefore, we used well-established mouse models to investigate the impact of dual exposure to e-cigarette vapors and tobacco cigarette smoke on lung homeostasis. Groups of female BALB/c mice were exposed to room air, tobacco smoke only, nicotine-free flavor-free e-cigarette vapors only or both tobacco smoke and e-cigarette vapors. Moreover, since tobacco smoke and electronic cigarette vapors both affect circadian processes in the lungs, groups of mice were euthanized at two different time points during the day. We found that dual-exposed mice had altered lung circadian gene expression compared with mice exposed to tobacco smoke alone. Dual-exposed mice also had different frequencies of dendritic cells, macrophages, and neutrophils in the lung tissue compared with mice exposed to tobacco smoke alone, an observation also valid for B-lymphocytes and CD4+ and CD8+ T lymphocytes. Exposure to e-cigarette vapors also impacted the levels of immunoglobulins in the bronchoalveolar lavage and serum. Finally, e-cigarette and dual exposures increased airway resistance compared with mice exposed to room air or tobacco smoke alone, respectively. Taken together, these data suggest that e-cigarette vapors, even without nicotine or flavors, could affect how the lungs react to tobacco cigarette smoke exposure in dual users, potentially altering the pathological course triggered by smoking.


Assuntos
Linfócitos B/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Animais , Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nicotina/metabolismo , Nicotina/farmacologia
18.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L391-L402, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640840

RESUMO

Genetic predispositions and environmental exposures are regarded as the main predictors of respiratory disease development. Although the impact of dietary essential nutrient deficiencies on cardiovascular disease, obesity, and type II diabetes has been widely studied, it remains poorly explored in chronic respiratory diseases. Dietary choline and methionine deficiencies are common in the population, and their impact on pulmonary homeostasis is currently unknown. Mice were fed choline- and/or methionine-deficient diets while being exposed to room-air or cigarette smoke for up to 4 wk. Lung functions were assessed using the FlexiVent. Pulmonary transcriptional activity was assessed using gene expression microarrays and quantitative PCR. Immune cells, cytokines, and phosphatidylcholine were quantified in the bronchoalveolar lavage. In this study, we found that short-term dietary choline and/or methionine deficiencies significantly affect lung function in mice in a reversible manner. It also reduced transcriptional levels of collagens and elastin as well as pulmonary surfactant phosphatidylcholine levels. We also found that dietary choline and/or methionine deficiencies markedly interfered with the pulmonary response to cigarette smoke exposure, modulating lung function and dampening inflammation. These findings clearly show that dietary choline and/or methionine deficiencies can have dramatic pathophysiological effects on the lungs and can also affect the pathobiology of cigarette smoke-induced pulmonary alterations. Expanding our knowledge in the field of "nutri-respiratory research" may reveal a crucial role for essential nutrients in pulmonary health and disease, which may prove to be as relevant as genetic predispositions and environmental exposures.


Assuntos
Colina/farmacologia , Homeostase/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metionina/farmacologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Feminino , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Surfactantes Pulmonares/metabolismo , Fumar/efeitos adversos
19.
Am J Respir Cell Mol Biol ; 63(2): 209-218, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32289229

RESUMO

In a proportion of patients with hypersensitivity pneumonitis, the biological and environmental factors that sustain inflammation are ill defined, resulting in no effective treatment option. Bioaerosols found in occupational settings are complex and often include Toll-like receptor ligands, such as endotoxins. How Toll-like receptor ligands contribute to the persistence of hypersensitivity pneumonitis, however, remains poorly understood. In a previous study, we found that an S1P1 (sphingosine-1-phosphate receptor 1) agonist prevented the reactivation of antigen-driven B-cell responses in the lung. Here, we assessed the impact of endotoxins on B-cell activation in preexisting hypersensitivity pneumonitis and the role of S1P1 in this phenomenon. The impact of endotoxins on pre-established hypersensitivity pneumonitis was studied in vivo. S1P1 levels were tracked on B cells in the course of the disease using S1P1-eGFP knockin mice, and the role of S1P1 on B-cell functions was assessed using pharmacological tools. S1P1 was found on B cells in experimental hypersensitivity pneumonitis. Endotoxin exposure enhanced neutrophil accumulation in the BAL of mice with experimental hypersensitivity pneumonitis. This was associated with enhanced CD69 cell-surface expression on lymphocytes in the BAL. In isolated B cells, endotoxins increased cell-surface levels of costimulatory molecules and CD69, which was prevented by an S1P1 agonist. S1P1 modulators also reduced TNF production by B cells and their capacity to trigger T-cell cooperation ex vivo. An S1P1 ligand directly inhibited endotoxin-induced B-cell activation.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Linfócitos B/imunologia , Endotoxinas/imunologia , Receptores de Esfingosina-1-Fosfato/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Camundongos , Neutrófilos/imunologia
20.
Mol Metab ; 30: 184-191, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767170

RESUMO

OBJECTIVES: Hepatokines are proteins secreted by the liver that impact the functions of the liver and various tissues through autocrine, paracrine, and endocrine signaling. Recently, Tsukushi (TSK) was identified as a new hepatokine that is induced by obesity and cold exposure. It was proposed that TSK controls sympathetic innervation and thermogenesis in brown adipose tissue (BAT) and that loss of TSK protects against diet-induced obesity and improves glucose homeostasis. Here we report the impact of deleting and/or overexpressing TSK on BAT thermogenic capacity, body weight regulation, and glucose homeostasis. METHODS: We measured the expression of thermogenic genes and markers of BAT innervation and activation in TSK-null and TSK-overexpressing mice. Body weight, body temperature, and parameters of glucose homeostasis were also assessed in the context of TSK loss and overexpression. RESULTS: The loss of TSK did not affect the thermogenic activation of BAT. We found that TSK-null mice were not protected against the development of obesity and did not show improvement in glucose tolerance. The overexpression of TSK also failed to modulate thermogenesis, body weight gain, and glucose homeostasis in mice. CONCLUSIONS: TSK is not a significant regulator of BAT thermogenesis and is unlikely to represent an effective target to prevent obesity and improve glucose homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Termogênese/genética , Aumento de Peso/genética , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal/fisiologia , Feminino , Glucose/metabolismo , Homeostase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Proteoglicanas/metabolismo , Aumento de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA