Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32414768

RESUMO

Microtubule-associated protein A1/B1-light chain 3 (LC3)-associated phagocytosis (LAP) is a type of non-canonical autophagy that regulates phagosome maturation in macrophages. However, the role and regulatory mechanism of LAP remain largely unknown. Recently, the membrane occupation and recognition nexus repeat-containing-2 (MORN2) was identified as a key component of LAP for the efficient formation of LC3-recruiting phagosomes. To characterize MORN2 and elucidate its function in LAP, we established a MORN2-overexpressing macrophage line. At a steady state, MORN2 was partially cleaved by the ubiquitin-proteasome system. MORN2 overexpression promoted not only LC3-II production but also LAP phagosome (LAPosome) acidification during Escherichia coli uptake. Furthermore, the formation of LAPosomes containing the yeast cell wall component zymosan was enhanced in MORN2-overexpressing cells and depended on reactive oxygen species (ROS). Finally, MORN2-mediated LAP was regulated by plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as SNAP-23 and syntaxin 11. Taken together, these findings demonstrate that MORN2, whose expression is downregulated via proteasomal digestion, is a limiting factor for LAP, and that membrane trafficking by SNARE proteins is involved in MORN2-mediated LAP.


Assuntos
Macrófagos/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Fagocitose/fisiologia , Animais , Regulação da Expressão Gênica , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
2.
Mol Biol Cell ; 30(9): 1085-1097, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30811271

RESUMO

Syntaxin 11 (stx11) is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) that is selectively expressed in immune cells; however, its precise role in macrophages is unclear. We showed that stx11 knockdown reduces the phagocytosis of Escherichia coli in interferon-γ-activated macrophages. stx11 knockdown decreased Toll-like receptor 4 (TLR4) localization on the plasma membrane without affecting total expression. Plasma membrane-localized TLR4 was primarily endocytosed within 1 h by lipopolysaccharide (LPS) stimulation and gradually relocalized 4 h after removal of LPS. This relocalization was significantly impaired by stx11 knockdown. The lack of TLR4 transport to the plasma membrane is presumably related to TLR4 degradation in acidic endosomal organelles. Additionally, an immunoprecipitation experiment suggested that stx11 interacts with SNAP-23, a plasma membrane-localized SNARE protein, whose depletion also inhibits TLR4 replenishment in LPS-stimulated cells. Using an intramolecular Förster resonance energy transfer (FRET) probe for SNAP-23, we showed that the high FRET efficiency caused by LPS stimulation is reduced by stx11 knockdown. These findings suggest that stx11 regulates the stimulus-dependent transport of TLR4 to the plasma membrane by cooperating with SNAP-23 in macrophages. Our results clarify the regulatory mechanisms underlying intracellular transport of TLR4 and have implications for microbial pathogenesis and immune responses.


Assuntos
Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Macrófagos/metabolismo , Fusão de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/fisiologia , Ligação Proteica , Transporte Proteico , Proteínas Qa-SNARE/genética , Receptor 4 Toll-Like/genética
3.
J Biochem ; 162(5): 309-316, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575453

RESUMO

Phagosome formation and maturation are essential innate immune mechanisms to engulf and digest foreign particles. To analyze these processes quantitatively, we established a specific Escherichia coli probe expressing a tandem fluorescent protein, comprising glutathione S-transferase fused with monomeric Cherry (mCherry) and monomeric Venus (mVenus). We demonstrated that mVenus was more susceptible to bleaching in an acidic environment than mCherry, and that the mVenus:mCherry fluorescence intensity ratio can be used to monitor phagosomal pH changes during maturation. Using this probe, we revealed that synaptosomal-associated protein of 23 kDa, a plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein, actively regulated phagocytosis of E. coli and subsequent phagosome maturation in macrophages. Our results indicated that this probe has the potential to be a powerful tool in understanding the molecular mechanisms of phagosome formation and maturation.


Assuntos
Escherichia coli/fisiologia , Proteínas Luminescentes/metabolismo , Fagossomos/fisiologia , Animais , Linhagem Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Camundongos , Fagocitose/fisiologia , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo
4.
Stem Cell Reports ; 8(2): 226-234, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28111276

RESUMO

To predict drug-induced serious adverse events (SAE) in clinical trials, a model using a panel of cells derived from human induced pluripotent stem cells (hiPSCs) of individuals with different susceptibilities could facilitate major advancements in translational research in terms of safety and pharmaco-economics. However, it is unclear whether hiPSC-derived cells can recapitulate interindividual differences in drug-induced SAE susceptibility in populations not having genetic disorders such as healthy subjects. Here, we evaluated individual differences in SAE susceptibility based on an in vitro model using hiPSC-derived cardiomyocytes (hiPSC-CMs) as a pilot study. hiPSCs were generated from blood samples of ten healthy volunteers with different susceptibilities to moxifloxacin (Mox)-induced QT prolongation. Different Mox-induced field potential duration (FPD) prolongation values were observed in the hiPSC-CMs from each individual. Interestingly, the QT interval was significantly positively correlated with FPD at clinically relevant concentrations (r > 0.66) in multiple analyses including concentration-QT analysis. Genomic analysis showed no interindividual significant differences in known target-binding sites for Mox and other drugs such as the hERG channel subunit, and baseline QT ranges were normal. The results suggest that hiPSC-CMs from healthy subjects recapitulate susceptibility to Mox-induced QT prolongation and provide proof of concept for in vitro preclinical trials.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Alelos , Diferenciação Celular , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Eletrocardiografia , Perfilação da Expressão Gênica , Frequência do Gene , Voluntários Saudáveis , Sistema de Condução Cardíaco/efeitos dos fármacos , Humanos , Masculino , Mutação , Miócitos Cardíacos/citologia , Polimorfismo de Nucleotídeo Único
5.
J Pharmacol Toxicol Methods ; 78: 93-102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26657830

RESUMO

INTRODUCTION: Drug-induced QT prolongation is a major safety issue during drug development because it may lead to lethal ventricular arrhythmias. In this study, we evaluated the utility of multi-electrode arrays (MEA) with human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) to predict drug-induced QT prolongation and arrhythmia. METHODS: Ten facilities evaluated the effects of 7 reference drugs (E-4031, moxifloxacin, flecainide, terfenadine, chromanol 293B, verapamil, and aspirin) using a MED64 MEA system with commercially available hiPS-CMs. Field potential duration (FPD), beat rate, FPD corrected by Fridericia's formula (FPDc), concentration inducing FPDc prolongation by 10% (FPDc10), and incidence of arrhythmia-like waveform were evaluated. RESULTS: The inter-facility variability of absolute values before drug application was similar to the intra-facility variability for FPD, beat rate, and FPDc. The inter-facility variability of FPDc10 for 5 reference drugs ranged from 1.8- to 5.8-fold. At all 10 facilities, E-4031, moxifloxacin, and flecainide prolonged FPDc and induced arrhythmia-like waveforms at concentrations 1.8- to 6.1-fold higher than their FPDc10. Terfenadine prolonged FPDc and induced beating arrest at 8.0 times the FPDc10. The average FPDc10 values for E-4031, moxifloxacin, and terfenadine were comparable to reported plasma concentrations that caused QT prolongation or Torsade de Pointes in humans. Chromanol 293B, a IKs blocker, also prolonged FPDc but did not induce arrhythmia-like waveforms, even at 7.4 times the FPDc10. In contrast, verapamil shortened FPDc and aspirin did not affect FPDc or FP waveforms. DISCUSSION: MEA with hiPS-CMs can be a generalizable method for accurately predicting both QT prolongation and arrhythmogenic liability in humans.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Técnicas de Cultura de Células/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Arritmias Cardíacas/diagnóstico , Congressos como Assunto , Criopreservação/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/diagnóstico , Miócitos Cardíacos/fisiologia , Preparações Farmacêuticas/administração & dosagem , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...