Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(4): 563-574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773965

RESUMO

Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity.


Assuntos
Mamíferos , Vertebrados , Animais , Filogenia , Biodiversidade , Aves , Anfíbios
2.
Sci Data ; 9(1): 384, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798761

RESUMO

Wildfire dynamics are changing around the world and understanding their effects on ecological communities and landscapes is urgent and important. We report detailed food webs for unburned, low-to-moderate and high severity burned habitats three years post-fire in the Eldorado National Forest, California. The cumulative cross-habitat food web contains 3,084 ontogenetic stages (nodes) or plant parts comprising 849 species (including 107 primary producers, 634 invertebrates, 94 vertebrates). There were 178,655 trophic interactions between these nodes. We provide information on taxonomy, body size, biomass density and trophic interactions under each of the three burn conditions. We detail 19 sampling methods deployed across 27 sites (nine in each burn condition) used to estimate the richness, body size, abundance and biomass density estimates in the node lists. We provide the R code and raw data to estimate summarized node densities and assign trophic links.

3.
PLoS One ; 16(11): e0254723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731170

RESUMO

In the face of recent wildfires across the Western United States, it is essential that we understand both the dynamics that drive the spatial distribution of wildfire, and the major obstacles to modeling the probability of wildfire over space and time. However, it is well documented that the precise relationships of local vegetation, climate, and ignitions, and how they influence fire dynamics, may vary over space and among local climate, vegetation, and land use regimes. This raises questions not only as to the nature of the potentially nonlinear relationships between local conditions and the fire, but also the possibility that the scale at which such models are developed may be critical to their predictive power and to the apparent relationship of local conditions to wildfire. In this study we demonstrate that both local climate-through limitations posed by fuel dryness (CWD) and availability (AET)-and human activity-through housing density, roads, electrical infrastructure, and agriculture, play important roles in determining the annual probabilities of fire throughout California. We also document the importance of previous burn events as potential barriers to fire in some environments, until enough time has passed for vegetation to regenerate sufficiently to sustain subsequent wildfires. We also demonstrate that long-term and short-term climate variations exhibit different effects on annual fire probability, with short-term climate variations primarily impacting fire probability during periods of extreme climate anomaly. Further, we show that, when using nonlinear modeling techniques, broad-scale fire probability models can outperform localized models at predicting annual fire probability. Finally, this study represents a powerful tool for mapping local fire probability across the state of California under a variety of historical climate regimes, which is essential to avoided emissions modeling, carbon accounting, and hazard severity mapping for the application of fire-resistant building codes across the state of California.


Assuntos
Clima , Atividades Humanas , Incêndios Florestais , Agricultura , California , Mudança Climática , Ecossistema , Habitação , Humanos
4.
Glob Chang Biol ; 25(9): 2841-2854, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301168

RESUMO

Wildfires are becoming larger and more frequent across much of the United States due to anthropogenic climate change. No studies, however, have assessed fire prevalence in lake watersheds at broad spatial and temporal scales, and thus it is unknown whether wildfires threaten lakes and reservoirs (hereafter, lakes) of the United States. We show that fire activity has increased in lake watersheds across the continental United States from 1984 to 2015, particularly since 2005. Lakes have experienced the greatest fire activity in the western United States, Southern Great Plains, and Florida. Despite over 30 years of increasing fire exposure, fire effects on fresh waters have not been well studied; previous research has generally focused on streams, and most of the limited lake-fire research has been conducted in boreal landscapes. We therefore propose a conceptual model of how fire may influence the physical, chemical, and biological properties of lake ecosystems by synthesizing the best available science from terrestrial, aquatic, fire, and landscape ecology. This model also highlights emerging research priorities and provides a starting point to help land and lake managers anticipate potential effects of fire on ecosystem services provided by fresh waters and their watersheds.


Assuntos
Lagos , Incêndios Florestais , Ecologia , Ecossistema , Florida , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 114(18): 4582-4590, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416662

RESUMO

Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are (i) recognizing that fuels reduction cannot alter regional wildfire trends; (ii) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; (iii) actively managing more wild and prescribed fires with a range of severities; and (iv) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.


Assuntos
Mudança Climática , Florestas , Incêndios Florestais/prevenção & controle , Humanos , América do Norte
6.
Glob Chang Biol ; 23(8): 3219-3230, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211141

RESUMO

Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Canadá , México , América do Norte , Estados Unidos
7.
PLoS One ; 11(8): e0161805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27575592

RESUMO

Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.


Assuntos
Fenômenos Fisiológicos Vegetais , Árvores/fisiologia , California , Mudança Climática , Florestas , Modelos Teóricos , Abastecimento de Água
8.
Artigo em Inglês | MEDLINE | ID: mdl-27216509

RESUMO

Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.


Assuntos
Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Incêndios , Combustíveis Fósseis/análise , Monitoramento Ambiental
9.
PLoS One ; 11(4): e0153589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124597

RESUMO

The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.


Assuntos
Antropologia/estatística & dados numéricos , Mudança Climática/estatística & dados numéricos , Incêndios/estatística & dados numéricos , Atividades Humanas/estatística & dados numéricos , California , Clima , Desastres/estatística & dados numéricos , Humanos , Modelos Teóricos , Probabilidade
10.
Bioscience ; 66(2): 130-146, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593361

RESUMO

Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

12.
Nature ; 515(7525): 58-66, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373675

RESUMO

The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.


Assuntos
Ecossistema , Incêndios , Austrália , Mudança Climática , Conservação dos Recursos Naturais , Política Ambiental , Incêndios/prevenção & controle , Incêndios/estatística & dados numéricos , Florestas , Geografia , Habitação , Atividades Humanas , Humanos , Região do Mediterrâneo , Densidade Demográfica , Gestão de Riscos , Sudoeste dos Estados Unidos
13.
PLoS One ; 9(10): e110637, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337785

RESUMO

Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.


Assuntos
Incêndios , Plantas , California , Clima , Ecossistema , Desenvolvimento Vegetal , Dispersão Vegetal , Tecnologia de Sensoriamento Remoto
14.
Trends Ecol Evol ; 29(7): 390-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24875589

RESUMO

Microclimates have played a critical role in past species range shifts, suggesting that they could be important in biological response to future change. Terms are needed to discuss these future effects. We propose that populations occupying microclimates be referred to as holdouts, stepping stones and microrefugia. A holdout is a population that persists in a microclimate for a limited period of time under deteriorating climatic conditions. Stepping stones successively occupy microclimates in a way that facilitates species' range shifts. Microrefugia refer to populations that persist in microclimates through a period of unfavorable climate. Because climate projections show that return to present climate is highly unlikely, conservation strategies need to be built around holdouts and stepping stones, rather than low-probability microrefugia.


Assuntos
Distribuição Animal , Mudança Climática , Conservação dos Recursos Naturais , Microclima , Dispersão Vegetal
15.
PLoS One ; 9(2): e87852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498383

RESUMO

There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.


Assuntos
Ecossistema , Incêndios/história , Agricultura Florestal/métodos , Pinus ponderosa/fisiologia , Traqueófitas/fisiologia , História do Século XIX , História do Século XX , História do Século XXI , América do Norte , Tempo (Meteorologia)
16.
Ecol Appl ; 24(6): 1341-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29160658

RESUMO

Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has not been tested explicitly with parallel data and modeling approaches. We addressed this issue by building two models of area burned for the period 1980­2010 using 14 explanatory variables to describe ignitions, vegetation, climate, and topography. We built one model at an annual resolution, with climate and some land-cover variables being updated annually, and the other model using 31-year fire "climatology" based on averaged variables. Despite substantial differences in the variables' contributions to the two models, their predictions were broadly similar, which suggests coherence between the spatial patterns of annually varying climate extremes and long-term climate normals. Where the models' predictions diverged, discrepancies between the annual and averaged models could be attributed to specific explanatory variables. For instance, annually updating land cover allowed us to identify a possible negative feedback between flammable biomass and fire activity. These results show that building models at more than one temporal resolution affords a deeper understanding of controls on fire activity in boreal Canada than can be achieved by examining a single model. However, in terms of spatial predictions, the additional effort required to build annual models of fire activity may not always be warranted in this study area. From a management and policy standpoint, this key finding should boost confidence in models that incorporate climatic normals, thereby providing a stronger foundation on which to make decisions on adaptation and mitigation strategies for future fire activity.


Assuntos
Taiga , Incêndios Florestais , Canadá , Modelos Estatísticos , Fatores de Tempo , Incêndios Florestais/prevenção & controle
17.
Ecol Appl ; 24(8): 1898-907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29185661

RESUMO

Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.


Assuntos
Biodiversidade , Clima , Conservação dos Recursos Naturais/legislação & jurisprudência , Governo Federal , Mapeamento Geográfico , Estados Unidos
18.
Ann N Y Acad Sci ; 1286: 92-107, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23581682

RESUMO

Alterations in natural fire patterns have negatively affected fire-prone ecosystems in many ways. The historical range of variability (HRV) concept evolved as a management target for natural vegetation composition and fire regimes in fire-prone ecosystems. HRV-based management inherently assumes that ecosystem resilience is reflected in observed ranges of past vegetation and fire dynamics, typically without knowledge of where thresholds exist beyond these dynamics. Given uncertainty in future conditions, some have argued that HRV may not adequately reflect ecosystem resilience to future fire activity. We suggest a refinement that includes concepts from the thresholds of potential concern (TPC) framework, which emphasizes tipping points at the extremes of ecosystem dynamics and other socially unacceptable outcomes. We propose bounded ranges of variation (BRV), an approach focused on building resilience by using historical information, but also by identifying socio-ecological thresholds to avoid and associated management action triggers. Here, we examine nonnative species and carbon sequestration as examples of how the BRV framework could be used in the context of conservation and fire management.

19.
Nature ; 487(7407): 273, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22810656
20.
PLoS One ; 7(1): e29212, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22279530

RESUMO

Losses to life and property from unplanned fires (wildfires) are forecast to increase because of population growth in peri-urban areas and climate change. In response, there have been moves to increase fuel reduction--clearing, prescribed burning, biomass removal and grazing--to afford greater protection to peri-urban communities in fire-prone regions. But how effective are these measures? Severe wildfires in southern Australia in 2009 presented a rare opportunity to address this question empirically. We predicted that modifying several fuels could theoretically reduce house loss by 76%-97%, which would translate to considerably fewer wildfire-related deaths. However, maximum levels of fuel reduction are unlikely to be feasible at every house for logistical and environmental reasons. Significant fuel variables in a logistic regression model we selected to predict house loss were (in order of decreasing effect): (1) the cover of trees and shrubs within 40 m of houses, (2) whether trees and shrubs within 40 m of houses was predominantly remnant or planted, (3) the upwind distance from houses to groups of trees or shrubs, (4) the upwind distance from houses to public forested land (irrespective of whether it was managed for nature conservation or logging), (5) the upwind distance from houses to prescribed burning within 5 years, and (6) the number of buildings or structures within 40 m of houses. All fuel treatments were more effective if undertaken closer to houses. For example, 15% fewer houses were destroyed if prescribed burning occurred at the observed minimum distance from houses (0.5 km) rather than the observed mean distance from houses (8.5 km). Our results imply that a shift in emphasis away from broad-scale fuel-reduction to intensive fuel treatments close to property will more effectively mitigate impacts from wildfires on peri-urban communities.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Agricultura Florestal/métodos , Habitação , Biomassa , Mudança Climática , Ecossistema , Humanos , Modelos Logísticos , Dinâmica Populacional , Árvores/crescimento & desenvolvimento , Urbanização , Vitória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...