Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 367(6475): 266-272, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949074

RESUMO

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Assuntos
Ciclo do Carbono , Extinção Biológica , Erupções Vulcânicas , Dióxido de Carbono/análise , Aquecimento Global , México , Modelos Teóricos
2.
Symbiosis ; 76(1): 25-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147222

RESUMO

Several foraminifers found in warm and low-nutrient ocean surface water have photosynthetic algae as endosymbionts (photosymbiosis). To understand the trophic interactions, we studied Globigerinoides sacculifer, a spinose planktic foraminifer that has a dinoflagellate endosymbiont. We controlled two nutritional factors, feeding and inorganic nutrients in the seawater. The growth of the host and the symbionts and the photophysiological parameters were monitored under four experimental conditions. The results demonstrated that the holobionts primarily relied on phagotrophy for growth. The foraminifers grew considerably, and the chlorophyll a content per foraminifer, which is an indicator of the symbiont population, increased in the fed groups, but not in the unfed groups. The nutrient-rich seawater used for some of the cultures made no difference in either the growth or photophysiology of the holobionts. These observations indicated that the symbionts mainly utilized metabolites from the hosts for photosynthesis rather than inorganic nutrients in the seawater. Additionally, we observed that the symbionts in the starved hosts maintained their photosynthetic capability for at least 12 days, and that the hosts maintained at least some symbionts until gametogenesis was achieved. This suggests that the hosts have to retain the symbionts as an energy source for reproduction. The symbionts may also play an indispensable role in the metabolic activities of the hosts including waste transport or essential compound synthesis. Overall, our results revealed a novel mode of photosymbiosis in planktic foraminifers which contrasts with that found in benthic photosymbiotic foraminifers and corals.

4.
PLoS One ; 9(4): e96219, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24769853

RESUMO

Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.


Assuntos
Ácidos Graxos/metabolismo , Sedimentos Geológicos/microbiologia , Fosfolipídeos/metabolismo , Proteobactérias/metabolismo , Quinonas/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Biomassa , Análise por Conglomerados , Microbiologia Ambiental , Ácidos Graxos/isolamento & purificação , Sedimentos Geológicos/química , Microbiota , Fosfolipídeos/isolamento & purificação , Quinonas/isolamento & purificação
5.
Nat Commun ; 2: 234, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21407200

RESUMO

The occurrence of Oceanic Anoxic Event 2 (OAE2) 94 million years ago is considered to be one of the largest carbon cycle perturbations in the Earth's history. The marked increase in the spatial extent of the anoxic conditions in the world's oceans associated with OAE2 resulted in the mass accumulation of organic-rich sediments. Although extensive oceanographic studies of OAE2 have been undertaken in the Atlantic Ocean, the Tethys Sea, and the epicontinental seas of Europe and America, little is known about OAE2 in the Pacific Ocean. Here, we present high-resolution carbon-isotope and degree of pyritization (DOP) data from marine sequences that formed along the continental margins of North America and Asia below the northeastern and northwestern Pacific Ocean. The predominance of low DOP values in these areas revealed that the continental margins of the Pacific Ocean were oxic for most of the OAE2 interval.


Assuntos
Fósseis , Sedimentos Geológicos , Fenômenos Geológicos , Anaerobiose , Ásia , Oceano Atlântico , Ciclo do Carbono , Isótopos de Carbono/química , Europa (Continente) , América do Norte , Oxirredução , Oxigênio/metabolismo , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...